miR-542-5p 靶向 GREM1,影响肾脏纤维化的进展。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-08-24 DOI:10.1002/jbt.23818
Shuting Pang, Boji Xie, Bingmei Feng, Guiling Xu, Qinglin Ye, Xuesong Chen, Liangping Ruan, Hong Chen, Shang-Ling Pan, Chao Xue, Wei Li
{"title":"miR-542-5p 靶向 GREM1,影响肾脏纤维化的进展。","authors":"Shuting Pang,&nbsp;Boji Xie,&nbsp;Bingmei Feng,&nbsp;Guiling Xu,&nbsp;Qinglin Ye,&nbsp;Xuesong Chen,&nbsp;Liangping Ruan,&nbsp;Hong Chen,&nbsp;Shang-Ling Pan,&nbsp;Chao Xue,&nbsp;Wei Li","doi":"10.1002/jbt.23818","DOIUrl":null,"url":null,"abstract":"<p>Renal fibrosis (RF) is a typical pathological presentation of end-stage chronic kidney disease (CKD) and autosomal dominant polycystic kidney disease (ADPKD). However, the precise regulatory mechanisms governing this re-expression process remain unclear. Differentially expressed microRNAs (miRNAs) associated with RF were screened by microarray analysis using the Gene Expression Omnibus (GEO) database. The miRNAs upstream of the genes in question were predicted using the miRWalk database. The miRNAs involved in the two GEO data sets were intersected to identify key miRNAs; their regulatory pathways were investigated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Subsequently, the effects and the underlying mechanisms of target miRNA on RF were examined in a unilateral ureteral obstruction (UUO)-induced mice renal fibrotic model and a transforming growth factor-β1 (TGF-β1)-induced tubular epithelium (HK-2) fibrotic cell model. In total, 109 and 32 differentially expressed miRNAs were identified in the GSE133530 and GSE80247 data sets, respectively. <i>GREM1</i> was identified as a hub gene, where its 2196 upstream miRNAs were predicted; miR-574-5p was found to be downregulated and closely related to fibrosis after data set intersection and enrichment analyses, thus was selected for further investigation. A differential expression heatmap (GSE162794) showed that miR-542-5p was downregulated. The expression of <i>GREM1</i> mRNA was upregulated, whereas that of miR-542-5p was downregulated in UUO mice and fibrotic HK-2 cells as compared with the relevant controls. The binding site of miR-542-5p was predicted at the 3'UTR region of <i>GREM1</i> and was confirmed by subsequent dual luciferase reporter gene assay. Western blot analysis showed that Gremlin-1 and Fibronectin were significantly upregulated after induction of TGF-β1; when miR-542-5p was overexpressed or <i>GREM1</i> mRNA was interfered, the upregulations of Gremlin-1 and Fibronectin were significantly reduced. Our research demonstrates that miR-542-5p plays a critical role in the progression of RF, and thus may be a promising therapeutic target for CKD and ADPKD.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbt.23818","citationCount":"0","resultStr":"{\"title\":\"miR-542-5p targets GREM1 to affect the progression of renal fibrosis\",\"authors\":\"Shuting Pang,&nbsp;Boji Xie,&nbsp;Bingmei Feng,&nbsp;Guiling Xu,&nbsp;Qinglin Ye,&nbsp;Xuesong Chen,&nbsp;Liangping Ruan,&nbsp;Hong Chen,&nbsp;Shang-Ling Pan,&nbsp;Chao Xue,&nbsp;Wei Li\",\"doi\":\"10.1002/jbt.23818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Renal fibrosis (RF) is a typical pathological presentation of end-stage chronic kidney disease (CKD) and autosomal dominant polycystic kidney disease (ADPKD). However, the precise regulatory mechanisms governing this re-expression process remain unclear. Differentially expressed microRNAs (miRNAs) associated with RF were screened by microarray analysis using the Gene Expression Omnibus (GEO) database. The miRNAs upstream of the genes in question were predicted using the miRWalk database. The miRNAs involved in the two GEO data sets were intersected to identify key miRNAs; their regulatory pathways were investigated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Subsequently, the effects and the underlying mechanisms of target miRNA on RF were examined in a unilateral ureteral obstruction (UUO)-induced mice renal fibrotic model and a transforming growth factor-β1 (TGF-β1)-induced tubular epithelium (HK-2) fibrotic cell model. In total, 109 and 32 differentially expressed miRNAs were identified in the GSE133530 and GSE80247 data sets, respectively. <i>GREM1</i> was identified as a hub gene, where its 2196 upstream miRNAs were predicted; miR-574-5p was found to be downregulated and closely related to fibrosis after data set intersection and enrichment analyses, thus was selected for further investigation. A differential expression heatmap (GSE162794) showed that miR-542-5p was downregulated. The expression of <i>GREM1</i> mRNA was upregulated, whereas that of miR-542-5p was downregulated in UUO mice and fibrotic HK-2 cells as compared with the relevant controls. The binding site of miR-542-5p was predicted at the 3'UTR region of <i>GREM1</i> and was confirmed by subsequent dual luciferase reporter gene assay. Western blot analysis showed that Gremlin-1 and Fibronectin were significantly upregulated after induction of TGF-β1; when miR-542-5p was overexpressed or <i>GREM1</i> mRNA was interfered, the upregulations of Gremlin-1 and Fibronectin were significantly reduced. Our research demonstrates that miR-542-5p plays a critical role in the progression of RF, and thus may be a promising therapeutic target for CKD and ADPKD.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbt.23818\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.23818\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.23818","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

肾纤维化(RF)是终末期慢性肾病(CKD)和常染色体显性多囊肾病(ADPKD)的典型病理表现。然而,这一再表达过程的确切调控机制仍不清楚。研究人员利用基因表达总库(GEO)数据库,通过芯片分析筛选出与RF相关的差异表达微RNA(miRNA)。利用 miRWalk 数据库预测了相关基因上游的 miRNA。对两组 GEO 数据中涉及的 miRNA 进行交叉分析,以确定关键的 miRNA;并利用基因本体论和京都基因组百科全书(KEGG)富集分析研究了它们的调控通路。随后,在单侧输尿管梗阻(UUO)诱导的小鼠肾纤维化模型和转化生长因子-β1(TGF-β1)诱导的肾小管上皮(HK-2)纤维化细胞模型中,研究了目标miRNA对RF的影响及其内在机制。在 GSE133530 和 GSE80247 数据集中,分别发现了 109 个和 32 个差异表达的 miRNA。其中,GREM1被确定为一个枢纽基因,其上游的2196个miRNA被预测;经过数据集交叉和富集分析,发现miR-574-5p被下调,且与纤维化密切相关,因此被选中作进一步研究。差异表达热图(GSE162794)显示,miR-542-5p 被下调。与相关对照组相比,在 UUO 小鼠和纤维化的 HK-2 细胞中,GREM1 mRNA 的表达上调,而 miR-542-5p 的表达下调。miR-542-5p的结合位点被预测在GREM1的3'UTR区域,并在随后的双荧光素酶报告基因检测中得到证实。Western印迹分析表明,TGF-β1诱导后,Gremlin-1和Fibronectin明显上调;当miR-542-5p过表达或GREM1 mRNA受干扰时,Gremlin-1和Fibronectin的上调明显降低。我们的研究表明,miR-542-5p在RF的进展中起着关键作用,因此可能是治疗CKD和ADPKD的一个有前景的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
miR-542-5p targets GREM1 to affect the progression of renal fibrosis

Renal fibrosis (RF) is a typical pathological presentation of end-stage chronic kidney disease (CKD) and autosomal dominant polycystic kidney disease (ADPKD). However, the precise regulatory mechanisms governing this re-expression process remain unclear. Differentially expressed microRNAs (miRNAs) associated with RF were screened by microarray analysis using the Gene Expression Omnibus (GEO) database. The miRNAs upstream of the genes in question were predicted using the miRWalk database. The miRNAs involved in the two GEO data sets were intersected to identify key miRNAs; their regulatory pathways were investigated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Subsequently, the effects and the underlying mechanisms of target miRNA on RF were examined in a unilateral ureteral obstruction (UUO)-induced mice renal fibrotic model and a transforming growth factor-β1 (TGF-β1)-induced tubular epithelium (HK-2) fibrotic cell model. In total, 109 and 32 differentially expressed miRNAs were identified in the GSE133530 and GSE80247 data sets, respectively. GREM1 was identified as a hub gene, where its 2196 upstream miRNAs were predicted; miR-574-5p was found to be downregulated and closely related to fibrosis after data set intersection and enrichment analyses, thus was selected for further investigation. A differential expression heatmap (GSE162794) showed that miR-542-5p was downregulated. The expression of GREM1 mRNA was upregulated, whereas that of miR-542-5p was downregulated in UUO mice and fibrotic HK-2 cells as compared with the relevant controls. The binding site of miR-542-5p was predicted at the 3'UTR region of GREM1 and was confirmed by subsequent dual luciferase reporter gene assay. Western blot analysis showed that Gremlin-1 and Fibronectin were significantly upregulated after induction of TGF-β1; when miR-542-5p was overexpressed or GREM1 mRNA was interfered, the upregulations of Gremlin-1 and Fibronectin were significantly reduced. Our research demonstrates that miR-542-5p plays a critical role in the progression of RF, and thus may be a promising therapeutic target for CKD and ADPKD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1