通过振动提高管状层流中超临界压力航空煤油传热的实验研究

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS Applied Thermal Engineering Pub Date : 2024-08-20 DOI:10.1016/j.applthermaleng.2024.124206
{"title":"通过振动提高管状层流中超临界压力航空煤油传热的实验研究","authors":"","doi":"10.1016/j.applthermaleng.2024.124206","DOIUrl":null,"url":null,"abstract":"<div><p>In advanced aero-engine thermal management systems, aviation kerosene serving as a coolant unavoidably works in a vibration environment. In this article, the laminar heat transfer performance of Chinese aviation kerosene RP-3 flowing through a horizontal micro-tube under various vibration conditions at supercritical pressures was investigated experimentally. The effects of several impact factors such as system pressure, heat flux, mass flux, inlet temperature, vibration acceleration, and vibration frequency on the heat transfer enhancement were explored in a systematic manner. Experimental results indicate that: (i) the vibration could lead to intense thermal and momentum mixing among different boundary layers of tubular laminar flow and significantly strengthens the heat transfer, and the higher <em>Re</em> can lead to a stronger enhancement effect. The maximum observed HTER across all experimental data is 2.8, occurring at <em>x</em>/<em>d</em> = 224.1 with the inlet temperature of 373 K; (ii) HTER hardly changes with system pressures, exhibiting a maximum relative deviation of 3.9 % at different pressures. Heat transfer enhancement has a strong dependency on heat flux, as the heat flux increases from 36 kW/m<sup>2</sup> to 108 kW/m<sup>2</sup>, the average HTC increased by up to 36.4 %; (iii) the HTC and HTER monotonically rise with increasing vibration acceleration. Peak values in HTC and HTER are observed at vibration frequencies of 625 Hz, 191 Hz, and 242 Hz; (iv) vibration has little impact on the thermal acceleration but noticeably weakens the buoyancy close to the outlet area at high heat flux. Two well-predicted correlations for the <em>Nu</em> in tubular laminar flow, one with vibration and one without, are proposed.</p></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation on heat transfer enhancement of supercritical pressure aviation kerosene in tubular laminar flow by vibration\",\"authors\":\"\",\"doi\":\"10.1016/j.applthermaleng.2024.124206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In advanced aero-engine thermal management systems, aviation kerosene serving as a coolant unavoidably works in a vibration environment. In this article, the laminar heat transfer performance of Chinese aviation kerosene RP-3 flowing through a horizontal micro-tube under various vibration conditions at supercritical pressures was investigated experimentally. The effects of several impact factors such as system pressure, heat flux, mass flux, inlet temperature, vibration acceleration, and vibration frequency on the heat transfer enhancement were explored in a systematic manner. Experimental results indicate that: (i) the vibration could lead to intense thermal and momentum mixing among different boundary layers of tubular laminar flow and significantly strengthens the heat transfer, and the higher <em>Re</em> can lead to a stronger enhancement effect. The maximum observed HTER across all experimental data is 2.8, occurring at <em>x</em>/<em>d</em> = 224.1 with the inlet temperature of 373 K; (ii) HTER hardly changes with system pressures, exhibiting a maximum relative deviation of 3.9 % at different pressures. Heat transfer enhancement has a strong dependency on heat flux, as the heat flux increases from 36 kW/m<sup>2</sup> to 108 kW/m<sup>2</sup>, the average HTC increased by up to 36.4 %; (iii) the HTC and HTER monotonically rise with increasing vibration acceleration. Peak values in HTC and HTER are observed at vibration frequencies of 625 Hz, 191 Hz, and 242 Hz; (iv) vibration has little impact on the thermal acceleration but noticeably weakens the buoyancy close to the outlet area at high heat flux. Two well-predicted correlations for the <em>Nu</em> in tubular laminar flow, one with vibration and one without, are proposed.</p></div>\",\"PeriodicalId\":8201,\"journal\":{\"name\":\"Applied Thermal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S135943112401874X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135943112401874X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在先进的航空发动机热管理系统中,作为冷却剂的航空煤油不可避免地要在振动环境中工作。本文通过实验研究了在超临界压力下,中国航空煤油 RP-3 在各种振动条件下流经水平微管的层流传热性能。系统地探讨了系统压力、热通量、质量通量、入口温度、振动加速度和振动频率等几个影响因素对传热增强的影响。实验结果表明(i) 振动可导致管状层流的不同边界层之间发生强烈的热量和动量混合,并显著增强传热,而更高的 Re 值可导致更强的增强效应。所有实验数据中观察到的最大 HTER 为 2.8,出现在 x/d = 224.1 时,入口温度为 373 K;(ii) HTER 几乎不随系统压力变化,在不同压力下的最大相对偏差为 3.9%。传热增强与热通量有很大关系,当热通量从 36 kW/m2 增加到 108 kW/m2 时,平均 HTC 最多增加 36.4%;(iii) HTC 和 HTER 随振动加速度的增加而单调上升。HTC 和 HTER 的峰值出现在振动频率为 625 Hz、191 Hz 和 242 Hz 时;(iv) 振动对热加速度的影响很小,但在高热通量时会明显减弱靠近出口区域的浮力。针对管状层流中的 Nu 提出了两种预测良好的相关性,一种是有振动的,另一种是无振动的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental investigation on heat transfer enhancement of supercritical pressure aviation kerosene in tubular laminar flow by vibration

In advanced aero-engine thermal management systems, aviation kerosene serving as a coolant unavoidably works in a vibration environment. In this article, the laminar heat transfer performance of Chinese aviation kerosene RP-3 flowing through a horizontal micro-tube under various vibration conditions at supercritical pressures was investigated experimentally. The effects of several impact factors such as system pressure, heat flux, mass flux, inlet temperature, vibration acceleration, and vibration frequency on the heat transfer enhancement were explored in a systematic manner. Experimental results indicate that: (i) the vibration could lead to intense thermal and momentum mixing among different boundary layers of tubular laminar flow and significantly strengthens the heat transfer, and the higher Re can lead to a stronger enhancement effect. The maximum observed HTER across all experimental data is 2.8, occurring at x/d = 224.1 with the inlet temperature of 373 K; (ii) HTER hardly changes with system pressures, exhibiting a maximum relative deviation of 3.9 % at different pressures. Heat transfer enhancement has a strong dependency on heat flux, as the heat flux increases from 36 kW/m2 to 108 kW/m2, the average HTC increased by up to 36.4 %; (iii) the HTC and HTER monotonically rise with increasing vibration acceleration. Peak values in HTC and HTER are observed at vibration frequencies of 625 Hz, 191 Hz, and 242 Hz; (iv) vibration has little impact on the thermal acceleration but noticeably weakens the buoyancy close to the outlet area at high heat flux. Two well-predicted correlations for the Nu in tubular laminar flow, one with vibration and one without, are proposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
期刊最新文献
Design and performance analysis of a novel liquid air energy storage system with a liquefaction capacity replenishment subsystem Piecewise-scheduled thrust command control for in-service thrust performance improvement of gas turbine aero-engines: A hybrid fast design approach Effect of hole-to-hole angle in the behaviors of shock cells and fuel redistribution under flash boiling conditions Numerical investigation on acid vapor condensation characteristics of honeycomb H-type finned tube heat exchangers with hexagonal fins Designing and multi-objective optimization of a novel multigenerational system based on a geothermal energy resource from the perspective of 4E analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1