{"title":"基于晶体塑性相场的双相钛合金动态再结晶过程中界面微结构演变分析","authors":"Ritam Chatterjee , Aayush Trivedi , S.V.S. Narayana Murty , Alankar Alankar","doi":"10.1016/j.ijplas.2024.104087","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, an integrated crystal plasticity finite element–phase–field (CPFE–PF) model is developed to examine dynamic recrystallization (DRX) in a dual phase Ti alloy. The CP framework is coupled with PF by updating the free energy density with energy contributions due to plasticity. The evolution of grain boundaries through evolving non-conserved order parameters in the PF model is tracked using the Allen–Cahn equation. Nucleation is allowed to occur if the dislocation density exceeds a critical value. DRX is studied in various Ti morphologies such as an <span><math><mrow><mi>α</mi><mo>−</mo></mrow></math></span>Ti single crystal containing a stiff elastoplastic particle, <span><math><mi>α</mi></math></span>-Ti bicrystals with low and high misorientation between grains, an <span><math><mrow><mi>α</mi><mo>−</mo><mi>β</mi></mrow></math></span> bicrystal and a globular <span><math><mrow><mi>α</mi><mo>−</mo><mi>β</mi></mrow></math></span> Ti structure with <span><math><mi>β</mi></math></span> phase at <span><math><mrow><mi>α</mi><mo>−</mo><mi>α</mi></mrow></math></span> interfaces. For an <span><math><mrow><mi>α</mi><mo>−</mo></mrow></math></span>Ti bicrystal, a high misorientation facilitates the onset of DRX at the <span><math><mrow><mi>α</mi><mo>−</mo><mi>α</mi></mrow></math></span> interface at a significantly lower strain than the bicrystal with low misorientation. In an <span><math><mrow><mi>α</mi><mo>−</mo><mi>β</mi></mrow></math></span> bicrystal, DRX is only observed at the <span><math><mrow><mi>α</mi><mo>−</mo><mi>β</mi></mrow></math></span> interface. For the globular morphology, nucleation is observed at both <span><math><mrow><mi>α</mi><mo>−</mo><mi>β</mi></mrow></math></span> interfaces and inside <span><math><mi>α</mi></math></span> grains, which is consistent with previous experimental observations for a similar morphology. Nucleation inside <span><math><mi>α</mi></math></span> grains is explained by the correlation between SSD density and misorientation indicators such as KAM and GROD at the nucleus site. To correlate slip activity with nucleation propensity immediately prior to different nucleation events, the dislocation density, shear rate and Schmid factors on different slip systems are evaluated at nucleation sites.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"181 ","pages":"Article 104087"},"PeriodicalIF":9.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal plasticity-phase–field based analyses of interfacial microstructural evolution during dynamic recrystallization in a dual phase titanium alloy\",\"authors\":\"Ritam Chatterjee , Aayush Trivedi , S.V.S. Narayana Murty , Alankar Alankar\",\"doi\":\"10.1016/j.ijplas.2024.104087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, an integrated crystal plasticity finite element–phase–field (CPFE–PF) model is developed to examine dynamic recrystallization (DRX) in a dual phase Ti alloy. The CP framework is coupled with PF by updating the free energy density with energy contributions due to plasticity. The evolution of grain boundaries through evolving non-conserved order parameters in the PF model is tracked using the Allen–Cahn equation. Nucleation is allowed to occur if the dislocation density exceeds a critical value. DRX is studied in various Ti morphologies such as an <span><math><mrow><mi>α</mi><mo>−</mo></mrow></math></span>Ti single crystal containing a stiff elastoplastic particle, <span><math><mi>α</mi></math></span>-Ti bicrystals with low and high misorientation between grains, an <span><math><mrow><mi>α</mi><mo>−</mo><mi>β</mi></mrow></math></span> bicrystal and a globular <span><math><mrow><mi>α</mi><mo>−</mo><mi>β</mi></mrow></math></span> Ti structure with <span><math><mi>β</mi></math></span> phase at <span><math><mrow><mi>α</mi><mo>−</mo><mi>α</mi></mrow></math></span> interfaces. For an <span><math><mrow><mi>α</mi><mo>−</mo></mrow></math></span>Ti bicrystal, a high misorientation facilitates the onset of DRX at the <span><math><mrow><mi>α</mi><mo>−</mo><mi>α</mi></mrow></math></span> interface at a significantly lower strain than the bicrystal with low misorientation. In an <span><math><mrow><mi>α</mi><mo>−</mo><mi>β</mi></mrow></math></span> bicrystal, DRX is only observed at the <span><math><mrow><mi>α</mi><mo>−</mo><mi>β</mi></mrow></math></span> interface. For the globular morphology, nucleation is observed at both <span><math><mrow><mi>α</mi><mo>−</mo><mi>β</mi></mrow></math></span> interfaces and inside <span><math><mi>α</mi></math></span> grains, which is consistent with previous experimental observations for a similar morphology. Nucleation inside <span><math><mi>α</mi></math></span> grains is explained by the correlation between SSD density and misorientation indicators such as KAM and GROD at the nucleus site. To correlate slip activity with nucleation propensity immediately prior to different nucleation events, the dislocation density, shear rate and Schmid factors on different slip systems are evaluated at nucleation sites.</p></div>\",\"PeriodicalId\":340,\"journal\":{\"name\":\"International Journal of Plasticity\",\"volume\":\"181 \",\"pages\":\"Article 104087\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plasticity\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0749641924002146\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924002146","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Crystal plasticity-phase–field based analyses of interfacial microstructural evolution during dynamic recrystallization in a dual phase titanium alloy
In this study, an integrated crystal plasticity finite element–phase–field (CPFE–PF) model is developed to examine dynamic recrystallization (DRX) in a dual phase Ti alloy. The CP framework is coupled with PF by updating the free energy density with energy contributions due to plasticity. The evolution of grain boundaries through evolving non-conserved order parameters in the PF model is tracked using the Allen–Cahn equation. Nucleation is allowed to occur if the dislocation density exceeds a critical value. DRX is studied in various Ti morphologies such as an Ti single crystal containing a stiff elastoplastic particle, -Ti bicrystals with low and high misorientation between grains, an bicrystal and a globular Ti structure with phase at interfaces. For an Ti bicrystal, a high misorientation facilitates the onset of DRX at the interface at a significantly lower strain than the bicrystal with low misorientation. In an bicrystal, DRX is only observed at the interface. For the globular morphology, nucleation is observed at both interfaces and inside grains, which is consistent with previous experimental observations for a similar morphology. Nucleation inside grains is explained by the correlation between SSD density and misorientation indicators such as KAM and GROD at the nucleus site. To correlate slip activity with nucleation propensity immediately prior to different nucleation events, the dislocation density, shear rate and Schmid factors on different slip systems are evaluated at nucleation sites.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.