蛋白质的差示扫描量热法和水中的齐姆-布拉格模型

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Archives of biochemistry and biophysics Pub Date : 2024-08-23 DOI:10.1016/j.abb.2024.110132
{"title":"蛋白质的差示扫描量热法和水中的齐姆-布拉格模型","authors":"","doi":"10.1016/j.abb.2024.110132","DOIUrl":null,"url":null,"abstract":"<div><p>Differential Scanning Calorimetry (DSC) is a regular and powerful tool to measure the specific heat profile of various materials. Hydrogen bonds play a crucial role in stabilizing the three-dimensional structure of proteins. Naturally, information about the strength of hydrogen bonds is contained in the measured DSC profiles. Despite its obvious importance, there is no approach that would allow the extraction of such information from the heat capacity measurements. In order to connect the measured profile to microscopic properties of a polypeptide chain, a proper model is required to fit. Using recent advances in the Zimm–Bragg (ZB) theory of protein folding in water, we propose a new and efficient algorithm to process the DSC experimental data and to extract the H-bonding energy among other relevant constants. Thus, for the randomly picked set of 33 proteins, we have found a quite narrow distribution of hydrogen bonding energies from 1 to 8 kJ/mol with the average energy of intra-protein hydrogen bonds <span><math><mrow><mover><mrow><mi>h</mi></mrow><mo>¯</mo></mover><mo>=</mo><mn>4</mn><mo>.</mo><mn>2</mn><mo>±</mo><mn>1</mn><mo>.</mo><mn>5</mn><mspace></mspace></mrow></math></span> kJ/mol and the average energy of water–protein bonds as <span><math><mrow><mover><mrow><msub><mrow><mi>h</mi></mrow><mrow><mi>p</mi><mi>s</mi></mrow></msub></mrow><mo>¯</mo></mover><mo>=</mo><mn>3</mn><mo>.</mo><mn>8</mn><mo>±</mo><mn>1</mn><mo>.</mo><mn>5</mn><mspace></mspace></mrow></math></span> kJ/mol. This is an important illustration of a tiny disbalance between the water–protein and intraprotein hydrogen bonds. Fitted values of the nucleation parameter <span><math><mi>σ</mi></math></span> belong to the range from 0.001 to 0.01, as expected. The reported method can be considered as complementary to the classical two-state approach and together with other parameters provides the protein–water and intraprotein H-bonding energies, not accessible within the two-state paradigm.</p></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0003986124002546/pdfft?md5=c18638a73206494f868d828c2328dfd0&pid=1-s2.0-S0003986124002546-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Differential scanning calorimetry of proteins and Zimm–Bragg model in water\",\"authors\":\"\",\"doi\":\"10.1016/j.abb.2024.110132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Differential Scanning Calorimetry (DSC) is a regular and powerful tool to measure the specific heat profile of various materials. Hydrogen bonds play a crucial role in stabilizing the three-dimensional structure of proteins. Naturally, information about the strength of hydrogen bonds is contained in the measured DSC profiles. Despite its obvious importance, there is no approach that would allow the extraction of such information from the heat capacity measurements. In order to connect the measured profile to microscopic properties of a polypeptide chain, a proper model is required to fit. Using recent advances in the Zimm–Bragg (ZB) theory of protein folding in water, we propose a new and efficient algorithm to process the DSC experimental data and to extract the H-bonding energy among other relevant constants. Thus, for the randomly picked set of 33 proteins, we have found a quite narrow distribution of hydrogen bonding energies from 1 to 8 kJ/mol with the average energy of intra-protein hydrogen bonds <span><math><mrow><mover><mrow><mi>h</mi></mrow><mo>¯</mo></mover><mo>=</mo><mn>4</mn><mo>.</mo><mn>2</mn><mo>±</mo><mn>1</mn><mo>.</mo><mn>5</mn><mspace></mspace></mrow></math></span> kJ/mol and the average energy of water–protein bonds as <span><math><mrow><mover><mrow><msub><mrow><mi>h</mi></mrow><mrow><mi>p</mi><mi>s</mi></mrow></msub></mrow><mo>¯</mo></mover><mo>=</mo><mn>3</mn><mo>.</mo><mn>8</mn><mo>±</mo><mn>1</mn><mo>.</mo><mn>5</mn><mspace></mspace></mrow></math></span> kJ/mol. This is an important illustration of a tiny disbalance between the water–protein and intraprotein hydrogen bonds. Fitted values of the nucleation parameter <span><math><mi>σ</mi></math></span> belong to the range from 0.001 to 0.01, as expected. The reported method can be considered as complementary to the classical two-state approach and together with other parameters provides the protein–water and intraprotein H-bonding energies, not accessible within the two-state paradigm.</p></div>\",\"PeriodicalId\":8174,\"journal\":{\"name\":\"Archives of biochemistry and biophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0003986124002546/pdfft?md5=c18638a73206494f868d828c2328dfd0&pid=1-s2.0-S0003986124002546-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of biochemistry and biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003986124002546\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003986124002546","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

差示扫描量热仪(DSC)是测量各种材料比热曲线的常规而强大的工具。氢键在稳定蛋白质三维结构方面起着至关重要的作用。自然,氢键强度的信息也包含在所测量的 DSC 曲线中。尽管氢键的重要性不言而喻,但目前还没有一种方法可以从热容量测量值中提取此类信息。为了将测得的曲线与多肽链的微观特性联系起来,需要一个合适的模型来拟合。利用蛋白质在水中折叠的 Zimm-Bragg(ZB)理论的最新进展,我们提出了一种新的高效算法来处理 DSC 实验数据,并在其他相关常数中提取 H 键能。因此,对于随机挑选的 33 个蛋白质,我们发现氢键能量的分布范围很窄,从 1 到 8 kJ/mol,其中蛋白质内氢键的平均能量 h¯=4.2±1.5 kJ/mol,水-蛋白质键的平均能量为 hps¯=3.8±1.5 kJ/mol。这充分说明水-蛋白质氢键和蛋白质内氢键之间存在微小的不平衡。成核参数 σ 的拟合值在 0.001 至 0.01 之间,符合预期。所报告的方法可视为经典双态方法的补充,它与其他参数一起提供了双态范式无法获得的蛋白质-水和蛋白质内氢键能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differential scanning calorimetry of proteins and Zimm–Bragg model in water

Differential Scanning Calorimetry (DSC) is a regular and powerful tool to measure the specific heat profile of various materials. Hydrogen bonds play a crucial role in stabilizing the three-dimensional structure of proteins. Naturally, information about the strength of hydrogen bonds is contained in the measured DSC profiles. Despite its obvious importance, there is no approach that would allow the extraction of such information from the heat capacity measurements. In order to connect the measured profile to microscopic properties of a polypeptide chain, a proper model is required to fit. Using recent advances in the Zimm–Bragg (ZB) theory of protein folding in water, we propose a new and efficient algorithm to process the DSC experimental data and to extract the H-bonding energy among other relevant constants. Thus, for the randomly picked set of 33 proteins, we have found a quite narrow distribution of hydrogen bonding energies from 1 to 8 kJ/mol with the average energy of intra-protein hydrogen bonds h¯=4.2±1.5 kJ/mol and the average energy of water–protein bonds as hps¯=3.8±1.5 kJ/mol. This is an important illustration of a tiny disbalance between the water–protein and intraprotein hydrogen bonds. Fitted values of the nucleation parameter σ belong to the range from 0.001 to 0.01, as expected. The reported method can be considered as complementary to the classical two-state approach and together with other parameters provides the protein–water and intraprotein H-bonding energies, not accessible within the two-state paradigm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of biochemistry and biophysics
Archives of biochemistry and biophysics 生物-生化与分子生物学
CiteScore
7.40
自引率
0.00%
发文量
245
审稿时长
26 days
期刊介绍: Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics. Research Areas Include: • Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing • Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions • Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.
期刊最新文献
AI-assisted generation and in-depth in-silico evaluation of potential inhibitor targeting aurora kinase A (AURKA): An anticancer discovery exploiting synthetic lethality approach Editorial Board Identification of positions in human aldolase a that are neutral for apparent KM Liquiritigenin inhibits the migration, invasion, and EMT of prostate cancer through activating ER stress Rituximab induces ferroptosis and RSL3 overcomes rituximab resistance in diffuse large B-cell lymphoma cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1