{"title":"基于相互依存网络间环境比较的条件耦合对合作演化的影响","authors":"","doi":"10.1016/j.chaos.2024.115427","DOIUrl":null,"url":null,"abstract":"<div><p>The coupling between interdependent networks is a crucial factor affecting the evolution of cooperation. Actually, not all nodes in different sub-networks of the interdependent network can establish a one-to-one corresponding coupling relationship, and whether the connection between corresponding nodes can be built is often related to the local environment and global environment where the individual is located. Therefore, we explore how the conditional coupling between interdependent networks based on the comparisons of local and global environments affects the spread of cooperative behavior. We consider two types of conditional coupling modes: static coupling and dynamic coupling. The classic prisoner’s dilemma is chosen as the fundamental game model. The numerical simulation results on the interdependent network constructed by square lattices show that conditional coupling based on environmental comparison favors the propagation of cooperation, regardless of the type of conditional coupling. And the promotion level of cooperation is proportional to the coupling strength. Moreover, we further perform the simulation experiments on the interdependent networks composed of ER (Erdös–Rényi) random networks. Our explorations may be helpful for understanding the survival and maintenance of cooperation in the interconnected and interrelated systems.</p></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of conditional coupling based on environment comparison between interdependent networks on the evolution of cooperation\",\"authors\":\"\",\"doi\":\"10.1016/j.chaos.2024.115427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The coupling between interdependent networks is a crucial factor affecting the evolution of cooperation. Actually, not all nodes in different sub-networks of the interdependent network can establish a one-to-one corresponding coupling relationship, and whether the connection between corresponding nodes can be built is often related to the local environment and global environment where the individual is located. Therefore, we explore how the conditional coupling between interdependent networks based on the comparisons of local and global environments affects the spread of cooperative behavior. We consider two types of conditional coupling modes: static coupling and dynamic coupling. The classic prisoner’s dilemma is chosen as the fundamental game model. The numerical simulation results on the interdependent network constructed by square lattices show that conditional coupling based on environmental comparison favors the propagation of cooperation, regardless of the type of conditional coupling. And the promotion level of cooperation is proportional to the coupling strength. Moreover, we further perform the simulation experiments on the interdependent networks composed of ER (Erdös–Rényi) random networks. Our explorations may be helpful for understanding the survival and maintenance of cooperation in the interconnected and interrelated systems.</p></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924009792\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924009792","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The impact of conditional coupling based on environment comparison between interdependent networks on the evolution of cooperation
The coupling between interdependent networks is a crucial factor affecting the evolution of cooperation. Actually, not all nodes in different sub-networks of the interdependent network can establish a one-to-one corresponding coupling relationship, and whether the connection between corresponding nodes can be built is often related to the local environment and global environment where the individual is located. Therefore, we explore how the conditional coupling between interdependent networks based on the comparisons of local and global environments affects the spread of cooperative behavior. We consider two types of conditional coupling modes: static coupling and dynamic coupling. The classic prisoner’s dilemma is chosen as the fundamental game model. The numerical simulation results on the interdependent network constructed by square lattices show that conditional coupling based on environmental comparison favors the propagation of cooperation, regardless of the type of conditional coupling. And the promotion level of cooperation is proportional to the coupling strength. Moreover, we further perform the simulation experiments on the interdependent networks composed of ER (Erdös–Rényi) random networks. Our explorations may be helpful for understanding the survival and maintenance of cooperation in the interconnected and interrelated systems.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.