利用新提出的 U-Net 神经网络提高肺结节分割质量

A. Sadremomtaz, M. Zadnorouzi
{"title":"利用新提出的 U-Net 神经网络提高肺结节分割质量","authors":"A. Sadremomtaz,&nbsp;M. Zadnorouzi","doi":"10.1016/j.ibmed.2024.100166","DOIUrl":null,"url":null,"abstract":"<div><p>Diagnosing lung cancer is difficult due to the complexity of the nature of nodules. CT scan imaging is the most common imaging to diagnosis of lung cancer. Detection of nodules from these images is a challenge for radiologists and doctors. In recent years, neural networks have been developed for automatic, faster and more accurate diagnosis of diseases from medical images. In the present study, a new improved U-Net neural network is introduced for the automatic detection and segmentation of pulmonary nodules. The evaluation of this model has been done on LIDC-IDRI database. Our results have high values of recall, specificity and accuracy. The highest Recall value is 97.97 and is related to Juxtra-vascular. Specificity and accuracy for non-solid, partially solid and tiny has a value of 96.99.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"10 ","pages":"Article 100166"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666521224000334/pdfft?md5=e97dbb0434a7786853114c1216a89ad7&pid=1-s2.0-S2666521224000334-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Improving the quality of pulmonary nodules segmentation using the new proposed U-Net neural network\",\"authors\":\"A. Sadremomtaz,&nbsp;M. Zadnorouzi\",\"doi\":\"10.1016/j.ibmed.2024.100166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Diagnosing lung cancer is difficult due to the complexity of the nature of nodules. CT scan imaging is the most common imaging to diagnosis of lung cancer. Detection of nodules from these images is a challenge for radiologists and doctors. In recent years, neural networks have been developed for automatic, faster and more accurate diagnosis of diseases from medical images. In the present study, a new improved U-Net neural network is introduced for the automatic detection and segmentation of pulmonary nodules. The evaluation of this model has been done on LIDC-IDRI database. Our results have high values of recall, specificity and accuracy. The highest Recall value is 97.97 and is related to Juxtra-vascular. Specificity and accuracy for non-solid, partially solid and tiny has a value of 96.99.</p></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"10 \",\"pages\":\"Article 100166\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666521224000334/pdfft?md5=e97dbb0434a7786853114c1216a89ad7&pid=1-s2.0-S2666521224000334-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521224000334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521224000334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于结节的性质复杂,诊断肺癌非常困难。CT 扫描成像是诊断肺癌最常见的成像方法。从这些图像中检测结节对放射科医生和医师来说是一项挑战。近年来,人们开发了神经网络,用于从医学影像中自动、更快、更准确地诊断疾病。本研究引入了一种新的改进型 U-Net 神经网络,用于自动检测和分割肺结节。该模型在 LIDC-IDRI 数据库中进行了评估。我们的结果具有较高的召回值、特异性和准确性。最高召回值为 97.97,与并血管有关。对非实体、部分实体和微小实体的特异性和准确性值为 96.99。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the quality of pulmonary nodules segmentation using the new proposed U-Net neural network

Diagnosing lung cancer is difficult due to the complexity of the nature of nodules. CT scan imaging is the most common imaging to diagnosis of lung cancer. Detection of nodules from these images is a challenge for radiologists and doctors. In recent years, neural networks have been developed for automatic, faster and more accurate diagnosis of diseases from medical images. In the present study, a new improved U-Net neural network is introduced for the automatic detection and segmentation of pulmonary nodules. The evaluation of this model has been done on LIDC-IDRI database. Our results have high values of recall, specificity and accuracy. The highest Recall value is 97.97 and is related to Juxtra-vascular. Specificity and accuracy for non-solid, partially solid and tiny has a value of 96.99.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
期刊最新文献
Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Automatic characterization of cerebral MRI images for the detection of autism spectrum disorders DOTnet 2.0: Deep learning network for diffuse optical tomography image reconstruction Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Clustering polycystic ovary syndrome laboratory results extracted from a large internet forum with machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1