{"title":"利用新提出的 U-Net 神经网络提高肺结节分割质量","authors":"A. Sadremomtaz, M. Zadnorouzi","doi":"10.1016/j.ibmed.2024.100166","DOIUrl":null,"url":null,"abstract":"<div><p>Diagnosing lung cancer is difficult due to the complexity of the nature of nodules. CT scan imaging is the most common imaging to diagnosis of lung cancer. Detection of nodules from these images is a challenge for radiologists and doctors. In recent years, neural networks have been developed for automatic, faster and more accurate diagnosis of diseases from medical images. In the present study, a new improved U-Net neural network is introduced for the automatic detection and segmentation of pulmonary nodules. The evaluation of this model has been done on LIDC-IDRI database. Our results have high values of recall, specificity and accuracy. The highest Recall value is 97.97 and is related to Juxtra-vascular. Specificity and accuracy for non-solid, partially solid and tiny has a value of 96.99.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"10 ","pages":"Article 100166"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666521224000334/pdfft?md5=e97dbb0434a7786853114c1216a89ad7&pid=1-s2.0-S2666521224000334-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Improving the quality of pulmonary nodules segmentation using the new proposed U-Net neural network\",\"authors\":\"A. Sadremomtaz, M. Zadnorouzi\",\"doi\":\"10.1016/j.ibmed.2024.100166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Diagnosing lung cancer is difficult due to the complexity of the nature of nodules. CT scan imaging is the most common imaging to diagnosis of lung cancer. Detection of nodules from these images is a challenge for radiologists and doctors. In recent years, neural networks have been developed for automatic, faster and more accurate diagnosis of diseases from medical images. In the present study, a new improved U-Net neural network is introduced for the automatic detection and segmentation of pulmonary nodules. The evaluation of this model has been done on LIDC-IDRI database. Our results have high values of recall, specificity and accuracy. The highest Recall value is 97.97 and is related to Juxtra-vascular. Specificity and accuracy for non-solid, partially solid and tiny has a value of 96.99.</p></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"10 \",\"pages\":\"Article 100166\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666521224000334/pdfft?md5=e97dbb0434a7786853114c1216a89ad7&pid=1-s2.0-S2666521224000334-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521224000334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521224000334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving the quality of pulmonary nodules segmentation using the new proposed U-Net neural network
Diagnosing lung cancer is difficult due to the complexity of the nature of nodules. CT scan imaging is the most common imaging to diagnosis of lung cancer. Detection of nodules from these images is a challenge for radiologists and doctors. In recent years, neural networks have been developed for automatic, faster and more accurate diagnosis of diseases from medical images. In the present study, a new improved U-Net neural network is introduced for the automatic detection and segmentation of pulmonary nodules. The evaluation of this model has been done on LIDC-IDRI database. Our results have high values of recall, specificity and accuracy. The highest Recall value is 97.97 and is related to Juxtra-vascular. Specificity and accuracy for non-solid, partially solid and tiny has a value of 96.99.