Chenhe Wang , Ran Chen , Chenyang Wang , Yumeng Zhang , Xiaodong Wang , Mingwei Chen
{"title":"具有多相双峰微观结构的高强度、延展性低碳低合金钢","authors":"Chenhe Wang , Ran Chen , Chenyang Wang , Yumeng Zhang , Xiaodong Wang , Mingwei Chen","doi":"10.1016/j.ijplas.2024.104097","DOIUrl":null,"url":null,"abstract":"<div><p>Restrained by the strength-ductility tradeoff, it is still challenging to develop advanced high-strength low carbon low alloy (LCLA) steels with superior strength-ductility combinations and cost-effectiveness to satisfy industry demands. In this study, an innovative 2-cyclic quenching and partitioning (Q&P) heat treatment was developed to produce a novel LCLA steel with the optimized microstructure, in which a bimodal grain size distribution across various constituent phases was achieved. Tensile test results show that the 2-cyclic Q&P LCLA steel exhibits excellent mechanical properties with a uniform elongation, close to 18 %, nearly triple that of conventional Q&P LCLA steel while maintaining a tensile strength above 1 GPa. To reveal the underlying mechanisms of such exceptional strength-elongation synergy, the detailed deformation behaviors of the developed LCLA steel were characterized while the evolution of hetero-deformation-induced (HDI) stress and effective stress was investigated from the perspective of the dislocation model. It is indicated that, with increasing strain, the heterogeneous structures promote strong strain partitioning which leads to extensive geometrically necessary dislocations (GNDs) pile-ups at hetero-interface and persistently strong HDI strengthening effect, and produce the coordinated deformation among constituent phases to realize dislocation forest strengthening, collectively contributing to the enhanced work hardening capacity and hence overcoming the strength-ductility tradeoff. This study provides a new processing strategy for developing strong and ductile LCLA steels.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"181 ","pages":"Article 104097"},"PeriodicalIF":9.4000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong and ductile low carbon low alloy steels with multiphase bimodal microstructure\",\"authors\":\"Chenhe Wang , Ran Chen , Chenyang Wang , Yumeng Zhang , Xiaodong Wang , Mingwei Chen\",\"doi\":\"10.1016/j.ijplas.2024.104097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Restrained by the strength-ductility tradeoff, it is still challenging to develop advanced high-strength low carbon low alloy (LCLA) steels with superior strength-ductility combinations and cost-effectiveness to satisfy industry demands. In this study, an innovative 2-cyclic quenching and partitioning (Q&P) heat treatment was developed to produce a novel LCLA steel with the optimized microstructure, in which a bimodal grain size distribution across various constituent phases was achieved. Tensile test results show that the 2-cyclic Q&P LCLA steel exhibits excellent mechanical properties with a uniform elongation, close to 18 %, nearly triple that of conventional Q&P LCLA steel while maintaining a tensile strength above 1 GPa. To reveal the underlying mechanisms of such exceptional strength-elongation synergy, the detailed deformation behaviors of the developed LCLA steel were characterized while the evolution of hetero-deformation-induced (HDI) stress and effective stress was investigated from the perspective of the dislocation model. It is indicated that, with increasing strain, the heterogeneous structures promote strong strain partitioning which leads to extensive geometrically necessary dislocations (GNDs) pile-ups at hetero-interface and persistently strong HDI strengthening effect, and produce the coordinated deformation among constituent phases to realize dislocation forest strengthening, collectively contributing to the enhanced work hardening capacity and hence overcoming the strength-ductility tradeoff. This study provides a new processing strategy for developing strong and ductile LCLA steels.</p></div>\",\"PeriodicalId\":340,\"journal\":{\"name\":\"International Journal of Plasticity\",\"volume\":\"181 \",\"pages\":\"Article 104097\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plasticity\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0749641924002249\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924002249","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Strong and ductile low carbon low alloy steels with multiphase bimodal microstructure
Restrained by the strength-ductility tradeoff, it is still challenging to develop advanced high-strength low carbon low alloy (LCLA) steels with superior strength-ductility combinations and cost-effectiveness to satisfy industry demands. In this study, an innovative 2-cyclic quenching and partitioning (Q&P) heat treatment was developed to produce a novel LCLA steel with the optimized microstructure, in which a bimodal grain size distribution across various constituent phases was achieved. Tensile test results show that the 2-cyclic Q&P LCLA steel exhibits excellent mechanical properties with a uniform elongation, close to 18 %, nearly triple that of conventional Q&P LCLA steel while maintaining a tensile strength above 1 GPa. To reveal the underlying mechanisms of such exceptional strength-elongation synergy, the detailed deformation behaviors of the developed LCLA steel were characterized while the evolution of hetero-deformation-induced (HDI) stress and effective stress was investigated from the perspective of the dislocation model. It is indicated that, with increasing strain, the heterogeneous structures promote strong strain partitioning which leads to extensive geometrically necessary dislocations (GNDs) pile-ups at hetero-interface and persistently strong HDI strengthening effect, and produce the coordinated deformation among constituent phases to realize dislocation forest strengthening, collectively contributing to the enhanced work hardening capacity and hence overcoming the strength-ductility tradeoff. This study provides a new processing strategy for developing strong and ductile LCLA steels.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.