{"title":"以生态友好的方式从柠檬皮和果汁中合成银纳米粒子及其对 HSV-1 和 SARS-CoV-2 的抗病毒功效","authors":"Federica Dell'Annunziata , Ekaterine Mosidze , Veronica Folliero , Erwin P. Lamparelli , Valentina Lopardo , Pasquale Pagliano , Giovanna Della Porta , Massimiliano Galdiero , Aliosha Dzh Bakuridze , Gianluigi Franci","doi":"10.1016/j.virusres.2024.199455","DOIUrl":null,"url":null,"abstract":"<div><p>The growing threat of viral infections requires innovative therapeutic approaches to safeguard human health. Nanomaterials emerge as a promising solution to overcome the limitations associated with conventional therapies. The eco-friendly synthesis of silver nanoparticles (AgNPs) currently represents a method that guarantees antimicrobial efficacy, safety, and cost-effectiveness. This study explores the use of AgNPs derived from the peel (Lp-AgNPs) and juice (Lj-AgNPs) <em>Citrus limon “Ovale di Sorrento”</em>, cultivars of the Campania region. The antiviral potential was tested against viruses belonging to the <em>Coronaviridae</em> and <em>Herpesviridae</em>. AgNPs were synthesized by reduction method using silver nitrate solution mixed with aqueous extract of <em>C. limon</em> peel and juice. The formation of Lp-AgNPs and Lj-AgNPs was assessed using a UV–Vis spectrophotometer. The size, ζ-potential, concentration, and morphology of AgNPs were evaluated by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and field emission-scanning electron microscopy (FE-SEM). Cytotoxicity was evaluated in a concentration range between 500 and 7.8 µg/mL on VERO-76 and HaCaT cells, with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium test bromide (MTT). Antiviral activity consisted of virus pre-treatment, co-treatment, cellular pre-treatment, and post-infection tests versus HSV-1 and SARS-CoV-2 at a multiplicity of infections (MOI) of 0.01. Plaque reduction assays and real-time PCR provided data on the antiviral potential of tested compounds. Lp-AgNPs and Lj-AgNPs exhibited spherical morphology with respective diameters of 60 and 92 nm with concentrations of 4.22 and 4.84 × 10<sup>10</sup> particles/mL, respectively. The MTT data demonstrated minimal cytotoxicity, with 50 % cytotoxic concentrations (CC<sub>50</sub>) of Lp-AgNPs and Lj-AgNPs against VERO cells of 754.6 and 486.7 µg/mL. Similarly, CC<sub>50</sub> values against HaCaT were 457.3 µg/mL for Lp-AgNPs and 339.6 µg/mL for Lj-AgNPs, respectively. In the virus pre-treatment assay, 90 % inhibitory concentrations of HSV-1 and SARS-CoV-2 were 8.54–135.04 µg/mL for Lp-AgNPs and 6.13–186.77 µg/mL for Lj-AgNPs, respectively. The molecular investigation confirmed the antiviral data, recording a reduction in the UL54 and UL27 genes for HSV-1 and in the Spike (S) gene for SARS-CoV-2, following AgNP exposure. The results of this study suggest that Lp-AgNPs and Lj-AgNPs derived from <em>C. Limon</em> could offer a valid ecological, natural, local and safe strategy against viral infections.</p></div>","PeriodicalId":23483,"journal":{"name":"Virus research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168170224001485/pdfft?md5=0c8250a8a812d909e10b66b46c36f7f5&pid=1-s2.0-S0168170224001485-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Eco-friendly synthesis of silver nanoparticles from peel and juice C. limon and their antiviral efficacy against HSV-1 and SARS-CoV-2\",\"authors\":\"Federica Dell'Annunziata , Ekaterine Mosidze , Veronica Folliero , Erwin P. Lamparelli , Valentina Lopardo , Pasquale Pagliano , Giovanna Della Porta , Massimiliano Galdiero , Aliosha Dzh Bakuridze , Gianluigi Franci\",\"doi\":\"10.1016/j.virusres.2024.199455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The growing threat of viral infections requires innovative therapeutic approaches to safeguard human health. Nanomaterials emerge as a promising solution to overcome the limitations associated with conventional therapies. The eco-friendly synthesis of silver nanoparticles (AgNPs) currently represents a method that guarantees antimicrobial efficacy, safety, and cost-effectiveness. This study explores the use of AgNPs derived from the peel (Lp-AgNPs) and juice (Lj-AgNPs) <em>Citrus limon “Ovale di Sorrento”</em>, cultivars of the Campania region. The antiviral potential was tested against viruses belonging to the <em>Coronaviridae</em> and <em>Herpesviridae</em>. AgNPs were synthesized by reduction method using silver nitrate solution mixed with aqueous extract of <em>C. limon</em> peel and juice. The formation of Lp-AgNPs and Lj-AgNPs was assessed using a UV–Vis spectrophotometer. The size, ζ-potential, concentration, and morphology of AgNPs were evaluated by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and field emission-scanning electron microscopy (FE-SEM). Cytotoxicity was evaluated in a concentration range between 500 and 7.8 µg/mL on VERO-76 and HaCaT cells, with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium test bromide (MTT). Antiviral activity consisted of virus pre-treatment, co-treatment, cellular pre-treatment, and post-infection tests versus HSV-1 and SARS-CoV-2 at a multiplicity of infections (MOI) of 0.01. Plaque reduction assays and real-time PCR provided data on the antiviral potential of tested compounds. Lp-AgNPs and Lj-AgNPs exhibited spherical morphology with respective diameters of 60 and 92 nm with concentrations of 4.22 and 4.84 × 10<sup>10</sup> particles/mL, respectively. The MTT data demonstrated minimal cytotoxicity, with 50 % cytotoxic concentrations (CC<sub>50</sub>) of Lp-AgNPs and Lj-AgNPs against VERO cells of 754.6 and 486.7 µg/mL. Similarly, CC<sub>50</sub> values against HaCaT were 457.3 µg/mL for Lp-AgNPs and 339.6 µg/mL for Lj-AgNPs, respectively. In the virus pre-treatment assay, 90 % inhibitory concentrations of HSV-1 and SARS-CoV-2 were 8.54–135.04 µg/mL for Lp-AgNPs and 6.13–186.77 µg/mL for Lj-AgNPs, respectively. The molecular investigation confirmed the antiviral data, recording a reduction in the UL54 and UL27 genes for HSV-1 and in the Spike (S) gene for SARS-CoV-2, following AgNP exposure. The results of this study suggest that Lp-AgNPs and Lj-AgNPs derived from <em>C. Limon</em> could offer a valid ecological, natural, local and safe strategy against viral infections.</p></div>\",\"PeriodicalId\":23483,\"journal\":{\"name\":\"Virus research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168170224001485/pdfft?md5=0c8250a8a812d909e10b66b46c36f7f5&pid=1-s2.0-S0168170224001485-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virus research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168170224001485\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168170224001485","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
Eco-friendly synthesis of silver nanoparticles from peel and juice C. limon and their antiviral efficacy against HSV-1 and SARS-CoV-2
The growing threat of viral infections requires innovative therapeutic approaches to safeguard human health. Nanomaterials emerge as a promising solution to overcome the limitations associated with conventional therapies. The eco-friendly synthesis of silver nanoparticles (AgNPs) currently represents a method that guarantees antimicrobial efficacy, safety, and cost-effectiveness. This study explores the use of AgNPs derived from the peel (Lp-AgNPs) and juice (Lj-AgNPs) Citrus limon “Ovale di Sorrento”, cultivars of the Campania region. The antiviral potential was tested against viruses belonging to the Coronaviridae and Herpesviridae. AgNPs were synthesized by reduction method using silver nitrate solution mixed with aqueous extract of C. limon peel and juice. The formation of Lp-AgNPs and Lj-AgNPs was assessed using a UV–Vis spectrophotometer. The size, ζ-potential, concentration, and morphology of AgNPs were evaluated by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and field emission-scanning electron microscopy (FE-SEM). Cytotoxicity was evaluated in a concentration range between 500 and 7.8 µg/mL on VERO-76 and HaCaT cells, with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium test bromide (MTT). Antiviral activity consisted of virus pre-treatment, co-treatment, cellular pre-treatment, and post-infection tests versus HSV-1 and SARS-CoV-2 at a multiplicity of infections (MOI) of 0.01. Plaque reduction assays and real-time PCR provided data on the antiviral potential of tested compounds. Lp-AgNPs and Lj-AgNPs exhibited spherical morphology with respective diameters of 60 and 92 nm with concentrations of 4.22 and 4.84 × 1010 particles/mL, respectively. The MTT data demonstrated minimal cytotoxicity, with 50 % cytotoxic concentrations (CC50) of Lp-AgNPs and Lj-AgNPs against VERO cells of 754.6 and 486.7 µg/mL. Similarly, CC50 values against HaCaT were 457.3 µg/mL for Lp-AgNPs and 339.6 µg/mL for Lj-AgNPs, respectively. In the virus pre-treatment assay, 90 % inhibitory concentrations of HSV-1 and SARS-CoV-2 were 8.54–135.04 µg/mL for Lp-AgNPs and 6.13–186.77 µg/mL for Lj-AgNPs, respectively. The molecular investigation confirmed the antiviral data, recording a reduction in the UL54 and UL27 genes for HSV-1 and in the Spike (S) gene for SARS-CoV-2, following AgNP exposure. The results of this study suggest that Lp-AgNPs and Lj-AgNPs derived from C. Limon could offer a valid ecological, natural, local and safe strategy against viral infections.
期刊介绍:
Virus Research provides a means of fast publication for original papers on fundamental research in virology. Contributions on new developments concerning virus structure, replication, pathogenesis and evolution are encouraged. These include reports describing virus morphology, the function and antigenic analysis of virus structural components, virus genome structure and expression, analysis on virus replication processes, virus evolution in connection with antiviral interventions, effects of viruses on their host cells, particularly on the immune system, and the pathogenesis of virus infections, including oncogene activation and transduction.