关于不同试样几何形状下 Ti-6Al-4V 的动态剪切破坏

IF 3.4 3区 工程技术 Q1 MECHANICS International Journal of Solids and Structures Pub Date : 2024-08-22 DOI:10.1016/j.ijsolstr.2024.113036
Yutian Du , Zejian Xu , Caifang Qin , Mengyu Su , P.J. Tan , Fenglei Huang
{"title":"关于不同试样几何形状下 Ti-6Al-4V 的动态剪切破坏","authors":"Yutian Du ,&nbsp;Zejian Xu ,&nbsp;Caifang Qin ,&nbsp;Mengyu Su ,&nbsp;P.J. Tan ,&nbsp;Fenglei Huang","doi":"10.1016/j.ijsolstr.2024.113036","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the dynamic shear response and failure of Ti-6Al-4V using four different test specimen geometries, viz. Hat-Shaped Specimen (HSS), Flat Hat-Shaped Specimen (FHSS), Chip Hat-Shaped Specimen (CHSS) and Double Shear Specimen (DSS), are critically examined and compared. Through a combination of experiments (using the standard Split-Hopkinson Pressure Bar system), finite-element simulations and metallographic examinations of their fracture morphology, the dynamic shear characteristics (strain hardening, strain rate strengthening effect and failure strain) of Ti-6Al-4V obtained using the different specimen geometries are critically examined, compared and analyzed. It will be shown that differences in the stress/strain uniformity, the plastic deformation zone, and the stress state induced by the different specimen geometries lead to discrepancies in the measured shear response and failure that were observed. The shear stress–strain curve obtained using the DSS will be shown to be more precise than the other specimen geometries.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"304 ","pages":"Article 113036"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the dynamic shear failure of Ti-6Al-4V in different test specimen geometries\",\"authors\":\"Yutian Du ,&nbsp;Zejian Xu ,&nbsp;Caifang Qin ,&nbsp;Mengyu Su ,&nbsp;P.J. Tan ,&nbsp;Fenglei Huang\",\"doi\":\"10.1016/j.ijsolstr.2024.113036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the dynamic shear response and failure of Ti-6Al-4V using four different test specimen geometries, viz. Hat-Shaped Specimen (HSS), Flat Hat-Shaped Specimen (FHSS), Chip Hat-Shaped Specimen (CHSS) and Double Shear Specimen (DSS), are critically examined and compared. Through a combination of experiments (using the standard Split-Hopkinson Pressure Bar system), finite-element simulations and metallographic examinations of their fracture morphology, the dynamic shear characteristics (strain hardening, strain rate strengthening effect and failure strain) of Ti-6Al-4V obtained using the different specimen geometries are critically examined, compared and analyzed. It will be shown that differences in the stress/strain uniformity, the plastic deformation zone, and the stress state induced by the different specimen geometries lead to discrepancies in the measured shear response and failure that were observed. The shear stress–strain curve obtained using the DSS will be shown to be more precise than the other specimen geometries.</p></div>\",\"PeriodicalId\":14311,\"journal\":{\"name\":\"International Journal of Solids and Structures\",\"volume\":\"304 \",\"pages\":\"Article 113036\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020768324003950\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324003950","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文使用四种不同几何形状的试样(即帽形试样 (HSS)、平帽形试样 (FHSS)、片状帽形试样 (CHSS) 和双剪切试样 (DSS))对 Ti-6Al-4V 的动态剪切响应和破坏进行了批判性研究和比较。通过结合实验(使用标准的 Split-Hopkinson 压力棒系统)、有限元模拟和断口形貌的金相检查,对使用不同试样几何形状获得的 Ti-6Al-4V 动态剪切特性(应变硬化、应变速率强化效应和破坏应变)进行了严格的检查、比较和分析。结果表明,不同试样几何形状引起的应力/应变均匀性、塑性变形区和应力状态的差异导致测量的剪切响应和观察到的破坏存在差异。使用 DSS 得出的剪切应力-应变曲线将比其他试样几何形状更精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the dynamic shear failure of Ti-6Al-4V in different test specimen geometries

In this paper, the dynamic shear response and failure of Ti-6Al-4V using four different test specimen geometries, viz. Hat-Shaped Specimen (HSS), Flat Hat-Shaped Specimen (FHSS), Chip Hat-Shaped Specimen (CHSS) and Double Shear Specimen (DSS), are critically examined and compared. Through a combination of experiments (using the standard Split-Hopkinson Pressure Bar system), finite-element simulations and metallographic examinations of their fracture morphology, the dynamic shear characteristics (strain hardening, strain rate strengthening effect and failure strain) of Ti-6Al-4V obtained using the different specimen geometries are critically examined, compared and analyzed. It will be shown that differences in the stress/strain uniformity, the plastic deformation zone, and the stress state induced by the different specimen geometries lead to discrepancies in the measured shear response and failure that were observed. The shear stress–strain curve obtained using the DSS will be shown to be more precise than the other specimen geometries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
8.30%
发文量
405
审稿时长
70 days
期刊介绍: The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.
期刊最新文献
Editorial Board Stability discussion and application study of pseudo-corner models A new porous constitutive model for additively manufactured PLA Defect dynamics modeling of mesoscale plasticity Investigation of dynamic impact behavior of bighorn sheep horn
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1