具有二苯并富烯桥接三苯胺内核的界面层,用于高效稳定的反相包晶石太阳能电池

IF 4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Synthetic Metals Pub Date : 2024-08-14 DOI:10.1016/j.synthmet.2024.117715
Ta-Hung Cheng , Sheng-Chieh Lin , Zhong-En Shi , Yu-Sheng Hsiao , Chih-Ping Chen , Yung-Chung Chen
{"title":"具有二苯并富烯桥接三苯胺内核的界面层,用于高效稳定的反相包晶石太阳能电池","authors":"Ta-Hung Cheng ,&nbsp;Sheng-Chieh Lin ,&nbsp;Zhong-En Shi ,&nbsp;Yu-Sheng Hsiao ,&nbsp;Chih-Ping Chen ,&nbsp;Yung-Chung Chen","doi":"10.1016/j.synthmet.2024.117715","DOIUrl":null,"url":null,"abstract":"<div><p>Considering the energy level cascade, introducing a hole transport layer (HTL) between the NiOx and perovskite layers has become a common and effective strategy to enhance the performance of inverted perovskite solar cells (PSCs). Herein, we designed and synthesized three hole-transporting interfacial layers (<strong>TPAD</strong>, <strong>TPAO</strong>, and <strong>TPAS</strong>) based on a dibenzofulvene-bridged triphenylamine (TPA) core to fabricate efficient and stable inverted NiO<sub>x</sub>-based PSCs. Dibenzofulvene, known for its sp²-hybridized structure, offers superior planarity and molecular stacking, and it easily bonds with triphenylamine derivatives, resulting in unique light-harvesting and charge mobility properties for optoelectronic applications. Specifically, diphenylamine, dimethoxy diphenylamine, and dimethylthio diphenylamine were used as end-capping units for <strong>TPAD</strong>, <strong>TPAO</strong>, and <strong>TPAS</strong>, respectively. The NiO<sub>x</sub>-based inverted PSC devices fabricated with <strong>TPAS</strong> as an interfacial layer effectively modified NiO<sub>x</sub> to improve energy level alignment, enhance film quality and crystallinity, and improve carrier transport, leading to a high-quality perovskite layer and superior interface contact behavior. Consequently, this device yielded a highly efficient cell performance of 20.30 %, surpassing those using <strong>TPAD</strong> (19.29 %) and <strong>TPAO</strong> (18.78 %) as interfacial layers, and significantly outperforming devices using only NiO<sub>x</sub> (17.69 %). Additionally, the champion cell exhibited negligible hysteresis and long-term stability. These findings demonstrate a facile approach to preparing multifunctional TPA-based hole transport materials and showcase the efficient performance of inverted cells based on a triphenylamine dibenzofulvene-based interfacial layer, contributing to the development of high-efficiency inverted PSCs.</p></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"308 ","pages":"Article 117715"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial layer with a dibenzofulvene-bridged triphenylamine core for efficient and stable inverted perovskite solar cells\",\"authors\":\"Ta-Hung Cheng ,&nbsp;Sheng-Chieh Lin ,&nbsp;Zhong-En Shi ,&nbsp;Yu-Sheng Hsiao ,&nbsp;Chih-Ping Chen ,&nbsp;Yung-Chung Chen\",\"doi\":\"10.1016/j.synthmet.2024.117715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Considering the energy level cascade, introducing a hole transport layer (HTL) between the NiOx and perovskite layers has become a common and effective strategy to enhance the performance of inverted perovskite solar cells (PSCs). Herein, we designed and synthesized three hole-transporting interfacial layers (<strong>TPAD</strong>, <strong>TPAO</strong>, and <strong>TPAS</strong>) based on a dibenzofulvene-bridged triphenylamine (TPA) core to fabricate efficient and stable inverted NiO<sub>x</sub>-based PSCs. Dibenzofulvene, known for its sp²-hybridized structure, offers superior planarity and molecular stacking, and it easily bonds with triphenylamine derivatives, resulting in unique light-harvesting and charge mobility properties for optoelectronic applications. Specifically, diphenylamine, dimethoxy diphenylamine, and dimethylthio diphenylamine were used as end-capping units for <strong>TPAD</strong>, <strong>TPAO</strong>, and <strong>TPAS</strong>, respectively. The NiO<sub>x</sub>-based inverted PSC devices fabricated with <strong>TPAS</strong> as an interfacial layer effectively modified NiO<sub>x</sub> to improve energy level alignment, enhance film quality and crystallinity, and improve carrier transport, leading to a high-quality perovskite layer and superior interface contact behavior. Consequently, this device yielded a highly efficient cell performance of 20.30 %, surpassing those using <strong>TPAD</strong> (19.29 %) and <strong>TPAO</strong> (18.78 %) as interfacial layers, and significantly outperforming devices using only NiO<sub>x</sub> (17.69 %). Additionally, the champion cell exhibited negligible hysteresis and long-term stability. These findings demonstrate a facile approach to preparing multifunctional TPA-based hole transport materials and showcase the efficient performance of inverted cells based on a triphenylamine dibenzofulvene-based interfacial layer, contributing to the development of high-efficiency inverted PSCs.</p></div>\",\"PeriodicalId\":22245,\"journal\":{\"name\":\"Synthetic Metals\",\"volume\":\"308 \",\"pages\":\"Article 117715\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379677924001772\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Metals","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379677924001772","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

考虑到能级级联,在氧化镍层和包晶层之间引入空穴传输层(HTL)已成为提高倒置包晶太阳能电池(PSC)性能的一种常见而有效的策略。在此,我们设计并合成了三种基于二苯并富烯桥接三苯胺(TPA)内核的空穴传输界面层(TPAD、TPAO 和 TPAS),用于制造高效稳定的倒置氧化镍基 PSC。二苯并富烯因其sp²杂化结构而闻名,具有优异的平面性和分子堆叠性,并且很容易与三苯胺衍生物结合,从而为光电应用带来独特的光收集和电荷迁移特性。具体来说,二苯胺、二甲氧基二苯胺和二甲硫基二苯胺分别被用作 TPAD、TPAO 和 TPAS 的端封单元。以 TPAS 为界面层制作的基于 NiOx 的倒置 PSC 器件有效地修饰了 NiOx,改善了能级排列,提高了薄膜质量和结晶度,并改善了载流子传输,从而形成了高质量的过氧化物层和优异的界面接触行为。因此,该装置产生了 20.30 % 的高效电池性能,超过了使用 TPAD(19.29 %)和 TPAO(18.78 %)作为界面层的装置,并显著优于仅使用 NiOx(17.69 %)的装置。此外,冠军电池的滞后和长期稳定性可以忽略不计。这些发现证明了制备基于 TPA 的多功能空穴传输材料的简便方法,并展示了基于三苯胺二苯并富烯界面层的倒置电池的高效性能,有助于开发高效倒置 PSC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interfacial layer with a dibenzofulvene-bridged triphenylamine core for efficient and stable inverted perovskite solar cells

Considering the energy level cascade, introducing a hole transport layer (HTL) between the NiOx and perovskite layers has become a common and effective strategy to enhance the performance of inverted perovskite solar cells (PSCs). Herein, we designed and synthesized three hole-transporting interfacial layers (TPAD, TPAO, and TPAS) based on a dibenzofulvene-bridged triphenylamine (TPA) core to fabricate efficient and stable inverted NiOx-based PSCs. Dibenzofulvene, known for its sp²-hybridized structure, offers superior planarity and molecular stacking, and it easily bonds with triphenylamine derivatives, resulting in unique light-harvesting and charge mobility properties for optoelectronic applications. Specifically, diphenylamine, dimethoxy diphenylamine, and dimethylthio diphenylamine were used as end-capping units for TPAD, TPAO, and TPAS, respectively. The NiOx-based inverted PSC devices fabricated with TPAS as an interfacial layer effectively modified NiOx to improve energy level alignment, enhance film quality and crystallinity, and improve carrier transport, leading to a high-quality perovskite layer and superior interface contact behavior. Consequently, this device yielded a highly efficient cell performance of 20.30 %, surpassing those using TPAD (19.29 %) and TPAO (18.78 %) as interfacial layers, and significantly outperforming devices using only NiOx (17.69 %). Additionally, the champion cell exhibited negligible hysteresis and long-term stability. These findings demonstrate a facile approach to preparing multifunctional TPA-based hole transport materials and showcase the efficient performance of inverted cells based on a triphenylamine dibenzofulvene-based interfacial layer, contributing to the development of high-efficiency inverted PSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Synthetic Metals
Synthetic Metals 工程技术-材料科学:综合
CiteScore
8.30
自引率
4.50%
发文量
189
审稿时长
33 days
期刊介绍: This journal is an international medium for the rapid publication of original research papers, short communications and subject reviews dealing with research on and applications of electronic polymers and electronic molecular materials including novel carbon architectures. These functional materials have the properties of metals, semiconductors or magnets and are distinguishable from elemental and alloy/binary metals, semiconductors and magnets.
期刊最新文献
Graphene and CNT-based hybrid nanocomposite and its application in electrochemical energy conversion and storage devices Design and computational analysis of nitrobenzofurazan-based non-fullerene acceptors for organic solar cells: A DFT and molecular dynamics simulation study Editorial Board Synthesis and characterization of bipolar host materials based on indolocarbazole derivatives for green phosphorescent organic light-emitting diodes Tackling two different energy issues with one unique WS2-WO3/rGO nanocomposite: Energy storage and electrochemical hydrogen generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1