{"title":"设计铜的配位结构,提高葡萄糖光催化生产 C1 化学物质的能力","authors":"","doi":"10.1016/S1872-2067(24)60098-7","DOIUrl":null,"url":null,"abstract":"<div><p>Photocatalytic decomposition of sugars is a promising way of providing H<sub>2</sub>, CO, and HCOOH as sustainable energy vectors. However, the production of C<sub>1</sub> chemicals requires the cleavage of robust C−C bonds in sugars with concurrent production of H<sub>2</sub>, which remains challenging. Here, the photocatalytic activity for glucose decomposition to HCOOH, CO (C<sub>1</sub> chemicals), and H<sub>2</sub> on Cu/TiO<sub>2</sub> was enhanced by nitrogen doping. Owing to nitrogen doping, atomically dispersed and stable Cu sites resistant to light irradiation are formed on Cu/TiO<sub>2</sub>. The electronic interaction between Cu and nitrogen ions originates valence band structure and defect levels composed of N 2<em>p</em> orbit, distinct from undoped Cu/TiO<sub>2</sub>. Therefore, the lifetime of charge carriers is prolonged, resulting in the production of C<sub>1</sub> chemicals and H<sub>2</sub> with productivities 1.7 and 2.1 folds that of Cu/TiO<sub>2</sub>. This work provides a strategy to design coordinatively stable Cu ions for photocatalytic biomass conversion.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":null,"pages":null},"PeriodicalIF":15.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering the coordination structure of Cu for enhanced photocatalytic production of C1 chemicals from glucose\",\"authors\":\"\",\"doi\":\"10.1016/S1872-2067(24)60098-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Photocatalytic decomposition of sugars is a promising way of providing H<sub>2</sub>, CO, and HCOOH as sustainable energy vectors. However, the production of C<sub>1</sub> chemicals requires the cleavage of robust C−C bonds in sugars with concurrent production of H<sub>2</sub>, which remains challenging. Here, the photocatalytic activity for glucose decomposition to HCOOH, CO (C<sub>1</sub> chemicals), and H<sub>2</sub> on Cu/TiO<sub>2</sub> was enhanced by nitrogen doping. Owing to nitrogen doping, atomically dispersed and stable Cu sites resistant to light irradiation are formed on Cu/TiO<sub>2</sub>. The electronic interaction between Cu and nitrogen ions originates valence band structure and defect levels composed of N 2<em>p</em> orbit, distinct from undoped Cu/TiO<sub>2</sub>. Therefore, the lifetime of charge carriers is prolonged, resulting in the production of C<sub>1</sub> chemicals and H<sub>2</sub> with productivities 1.7 and 2.1 folds that of Cu/TiO<sub>2</sub>. This work provides a strategy to design coordinatively stable Cu ions for photocatalytic biomass conversion.</p></div>\",\"PeriodicalId\":9832,\"journal\":{\"name\":\"Chinese Journal of Catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872206724600987\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724600987","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Engineering the coordination structure of Cu for enhanced photocatalytic production of C1 chemicals from glucose
Photocatalytic decomposition of sugars is a promising way of providing H2, CO, and HCOOH as sustainable energy vectors. However, the production of C1 chemicals requires the cleavage of robust C−C bonds in sugars with concurrent production of H2, which remains challenging. Here, the photocatalytic activity for glucose decomposition to HCOOH, CO (C1 chemicals), and H2 on Cu/TiO2 was enhanced by nitrogen doping. Owing to nitrogen doping, atomically dispersed and stable Cu sites resistant to light irradiation are formed on Cu/TiO2. The electronic interaction between Cu and nitrogen ions originates valence band structure and defect levels composed of N 2p orbit, distinct from undoped Cu/TiO2. Therefore, the lifetime of charge carriers is prolonged, resulting in the production of C1 chemicals and H2 with productivities 1.7 and 2.1 folds that of Cu/TiO2. This work provides a strategy to design coordinatively stable Cu ions for photocatalytic biomass conversion.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.