通过二氧化碳硝酸盐还原和甘油氧化连续流电合成尿素和草酸

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED Chinese Journal of Catalysis Pub Date : 2024-08-01 DOI:10.1016/S1872-2067(24)60085-9
Shuanglong Zhou, Yue Shi, Yu Dai, Tianrong Zhan, Jianping Lai, Lei Wang
{"title":"通过二氧化碳硝酸盐还原和甘油氧化连续流电合成尿素和草酸","authors":"Shuanglong Zhou,&nbsp;Yue Shi,&nbsp;Yu Dai,&nbsp;Tianrong Zhan,&nbsp;Jianping Lai,&nbsp;Lei Wang","doi":"10.1016/S1872-2067(24)60085-9","DOIUrl":null,"url":null,"abstract":"<div><p>Urea and oxalic acid are critical component in various chemical manufacturing industries. However, achieving simultaneous generation of urea and oxalic acid in a continuous-flow electrolyzer is a challenge. Herein, we report a continuous-flow electrolyzer equipped with 9-square centimeter-effective area gas diffusion electrodes (GDE) which can simultaneously catalyze the glycerol oxidation reaction in the anode region and the reduction reaction of CO<sub>2</sub> and nitrate in the cathode region, producing oxalic acid and urea at both the anode and cathode, respectively. The current density at low cell voltage (0.9 V) remained above 18.7 mA cm<sup>–2</sup> for 10 consecutive electrolysis cycles (120 h in total), and the Faraday efficiency of oxalic acid (67.1%) and urea (70.9%) did not decay. Experimental and theoretical studies show that in terms of the formation of C–N bond at the cathode, Pd-sites can provide protons for the hydrogenation process of CO<sub>2</sub> and NO<sub>3</sub><sup>–</sup>, Cu-sites can promote the generation of *COOH and Bi-sites can stabilize *COOH. In addition, in terms of glycerol oxidation, the introduction of Cu and Bi into Pd metallene promotes the oxidation of hydroxyl groups and the cleavage of C–C bond in glycerol molecules, respectively.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"63 ","pages":"Pages 270-281"},"PeriodicalIF":15.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous-flow electrosynthesis of urea and oxalic acid by CO2-nitrate reduction and glycerol oxidation\",\"authors\":\"Shuanglong Zhou,&nbsp;Yue Shi,&nbsp;Yu Dai,&nbsp;Tianrong Zhan,&nbsp;Jianping Lai,&nbsp;Lei Wang\",\"doi\":\"10.1016/S1872-2067(24)60085-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Urea and oxalic acid are critical component in various chemical manufacturing industries. However, achieving simultaneous generation of urea and oxalic acid in a continuous-flow electrolyzer is a challenge. Herein, we report a continuous-flow electrolyzer equipped with 9-square centimeter-effective area gas diffusion electrodes (GDE) which can simultaneously catalyze the glycerol oxidation reaction in the anode region and the reduction reaction of CO<sub>2</sub> and nitrate in the cathode region, producing oxalic acid and urea at both the anode and cathode, respectively. The current density at low cell voltage (0.9 V) remained above 18.7 mA cm<sup>–2</sup> for 10 consecutive electrolysis cycles (120 h in total), and the Faraday efficiency of oxalic acid (67.1%) and urea (70.9%) did not decay. Experimental and theoretical studies show that in terms of the formation of C–N bond at the cathode, Pd-sites can provide protons for the hydrogenation process of CO<sub>2</sub> and NO<sub>3</sub><sup>–</sup>, Cu-sites can promote the generation of *COOH and Bi-sites can stabilize *COOH. In addition, in terms of glycerol oxidation, the introduction of Cu and Bi into Pd metallene promotes the oxidation of hydroxyl groups and the cleavage of C–C bond in glycerol molecules, respectively.</p></div>\",\"PeriodicalId\":9832,\"journal\":{\"name\":\"Chinese Journal of Catalysis\",\"volume\":\"63 \",\"pages\":\"Pages 270-281\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872206724600859\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724600859","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

尿素和草酸是各种化学制造业的关键成分。然而,在连续流电解槽中同时生成尿素和草酸是一项挑战。在此,我们报告了一种配备了 9 平方厘米有效面积气体扩散电极(GDE)的连续流电解槽,该电极可在阳极区同时催化甘油氧化反应,在阴极区同时催化二氧化碳和硝酸盐的还原反应,从而在阳极和阴极分别生成草酸和尿素。低电池电压(0.9 V)下的电流密度在连续 10 个电解循环(共 120 小时)中都保持在 18.7 mA cm-2 以上,草酸(67.1%)和尿素(70.9%)的法拉第效率没有衰减。实验和理论研究表明,在阴极 C-N 键的形成方面,Pd-sites 能为 CO2 和 NO3- 的氢化过程提供质子,Cu-sites 能促进 *COOH 的生成,Bi-sites 能稳定 *COOH。此外,就甘油氧化而言,在钯金属中引入 Cu 和 Bi 可分别促进甘油分子中羟基的氧化和 C-C 键的裂解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Continuous-flow electrosynthesis of urea and oxalic acid by CO2-nitrate reduction and glycerol oxidation

Urea and oxalic acid are critical component in various chemical manufacturing industries. However, achieving simultaneous generation of urea and oxalic acid in a continuous-flow electrolyzer is a challenge. Herein, we report a continuous-flow electrolyzer equipped with 9-square centimeter-effective area gas diffusion electrodes (GDE) which can simultaneously catalyze the glycerol oxidation reaction in the anode region and the reduction reaction of CO2 and nitrate in the cathode region, producing oxalic acid and urea at both the anode and cathode, respectively. The current density at low cell voltage (0.9 V) remained above 18.7 mA cm–2 for 10 consecutive electrolysis cycles (120 h in total), and the Faraday efficiency of oxalic acid (67.1%) and urea (70.9%) did not decay. Experimental and theoretical studies show that in terms of the formation of C–N bond at the cathode, Pd-sites can provide protons for the hydrogenation process of CO2 and NO3, Cu-sites can promote the generation of *COOH and Bi-sites can stabilize *COOH. In addition, in terms of glycerol oxidation, the introduction of Cu and Bi into Pd metallene promotes the oxidation of hydroxyl groups and the cleavage of C–C bond in glycerol molecules, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
期刊最新文献
Structural regulation strategies of nitrogen reduction electrocatalysts Anode design principles for efficient seawater electrolysis and inhibition of chloride oxidation Solar-driven H2O2 synthesis from H2O and O2 over molecular engineered organic framework photocatalysts Research progress of anionic vacancies in electrocatalysts for oxygen evolution reaction Enhanced electrochemical carbon dioxide reduction in membrane electrode assemblies with acidic electrolytes through a silicate buffer layer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1