硫的可用性和结瘤改变了刺槐对铅(Pb)暴露的反应。

Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-22 DOI:10.1016/j.jhazmat.2024.135612
Caixin Xue, Rui Liu, Zhuyuan Xia, Jin Jia, Bin Hu, Heinz Rennenberg
{"title":"硫的可用性和结瘤改变了刺槐对铅(Pb)暴露的反应。","authors":"Caixin Xue, Rui Liu, Zhuyuan Xia, Jin Jia, Bin Hu, Heinz Rennenberg","doi":"10.1016/j.jhazmat.2024.135612","DOIUrl":null,"url":null,"abstract":"<p><p>Both sulfur (S) supply and legume-rhizobium symbiosis can significantly contribute to enhancing the efficiency of phytoremediation of heavy metals (HMs). However, the regulatory mechanism determining the performance of legumes at lead (Pb) exposure have not been elucidated. Here, we cultivated black locust (Robinia pseudoacacia L.), a leguminous woody pioneer species at three S supply levels (i.e., deficient, moderate, and high S) with rhizobia inoculation and investigated the interaction of these treatments upon Pb exposure. Our results revealed that the root system of Robinia has a strong Pb accumulation and anti-oxidative capacity that protect the leaves from Pb toxicity. Compared with moderate S supply, high S supply significantly increased Pb accumulation in roots by promoting the synthesis of reduced S compounds (i.e., thiols, phytochelatin), and also strengthened the antioxidant system in leaves. Weakened defense at deficient S supply was indicated by enhanced oxidative damage. Rhizobia inoculation alleviated the oxidative damage of its Robinia host by immobilizing Pb to reduce its absorption by root cells. Together with enhanced Pb chelation in leaves, these mechanisms strengthen Pb detoxification in the Robinia-rhizobia symbiosis. Our results indicate that appropriate S supply can improve the defense of legume-rhizobia symbiosis against HM toxicity.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135612"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sulfur availability and nodulation modify the response of Robinia pseudoacacia L. to lead (Pb) exposure.\",\"authors\":\"Caixin Xue, Rui Liu, Zhuyuan Xia, Jin Jia, Bin Hu, Heinz Rennenberg\",\"doi\":\"10.1016/j.jhazmat.2024.135612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Both sulfur (S) supply and legume-rhizobium symbiosis can significantly contribute to enhancing the efficiency of phytoremediation of heavy metals (HMs). However, the regulatory mechanism determining the performance of legumes at lead (Pb) exposure have not been elucidated. Here, we cultivated black locust (Robinia pseudoacacia L.), a leguminous woody pioneer species at three S supply levels (i.e., deficient, moderate, and high S) with rhizobia inoculation and investigated the interaction of these treatments upon Pb exposure. Our results revealed that the root system of Robinia has a strong Pb accumulation and anti-oxidative capacity that protect the leaves from Pb toxicity. Compared with moderate S supply, high S supply significantly increased Pb accumulation in roots by promoting the synthesis of reduced S compounds (i.e., thiols, phytochelatin), and also strengthened the antioxidant system in leaves. Weakened defense at deficient S supply was indicated by enhanced oxidative damage. Rhizobia inoculation alleviated the oxidative damage of its Robinia host by immobilizing Pb to reduce its absorption by root cells. Together with enhanced Pb chelation in leaves, these mechanisms strengthen Pb detoxification in the Robinia-rhizobia symbiosis. Our results indicate that appropriate S supply can improve the defense of legume-rhizobia symbiosis against HM toxicity.</p>\",\"PeriodicalId\":94082,\"journal\":{\"name\":\"Journal of hazardous materials\",\"volume\":\"478 \",\"pages\":\"135612\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.135612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.135612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

硫(S)供应和豆科植物-根瘤菌共生都能显著提高重金属(HMs)的植物修复效率。然而,决定豆科植物在铅(Pb)暴露下表现的调控机制尚未阐明。在此,我们将豆科木本先锋物种黑刺槐(Robinia pseudoacacia L.)与根瘤菌接种一起,在三种S供应水平(即缺S、中S和高S)下进行栽培,并研究了这些处理在铅暴露时的相互作用。我们的研究结果表明,刺槐根系具有很强的铅积累和抗氧化能力,能保护叶片免受铅的毒性。与中等S供应量相比,高S供应量通过促进还原型S化合物(即硫醇、植物螯合物)的合成,显著增加了根系的铅积累,同时也加强了叶片的抗氧化系统。在缺乏 S 供应的情况下,氧化损伤加剧,表明防御能力减弱。接种根瘤菌可固定铅,减少根细胞对铅的吸收,从而减轻刺槐宿主的氧化损伤。这些机制与叶片中增强的铅螯合作用一起,加强了刺槐-根瘤菌共生中的铅解毒作用。我们的研究结果表明,适当的 S 供应可提高豆科植物-根瘤菌共生体对 HM 毒性的防御能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sulfur availability and nodulation modify the response of Robinia pseudoacacia L. to lead (Pb) exposure.

Both sulfur (S) supply and legume-rhizobium symbiosis can significantly contribute to enhancing the efficiency of phytoremediation of heavy metals (HMs). However, the regulatory mechanism determining the performance of legumes at lead (Pb) exposure have not been elucidated. Here, we cultivated black locust (Robinia pseudoacacia L.), a leguminous woody pioneer species at three S supply levels (i.e., deficient, moderate, and high S) with rhizobia inoculation and investigated the interaction of these treatments upon Pb exposure. Our results revealed that the root system of Robinia has a strong Pb accumulation and anti-oxidative capacity that protect the leaves from Pb toxicity. Compared with moderate S supply, high S supply significantly increased Pb accumulation in roots by promoting the synthesis of reduced S compounds (i.e., thiols, phytochelatin), and also strengthened the antioxidant system in leaves. Weakened defense at deficient S supply was indicated by enhanced oxidative damage. Rhizobia inoculation alleviated the oxidative damage of its Robinia host by immobilizing Pb to reduce its absorption by root cells. Together with enhanced Pb chelation in leaves, these mechanisms strengthen Pb detoxification in the Robinia-rhizobia symbiosis. Our results indicate that appropriate S supply can improve the defense of legume-rhizobia symbiosis against HM toxicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Melamine enhancing Cu-Fenton reaction for degradation of anthracyclines. Copper-nickel-MOF/nickel foam catalysts grown in situ for efficient electrochemical nitrate reduction to ammonia. Square-wave pulsed potential driven electrocatalytic degradation of 4-chlorophenol using Fe-Ni/rGO/PPy@NF three dimensional electrode. First insight into the environmental fate of N-acetylated sulfonamides from wastewater disinfection to solar-irradiated receiving waters. Hot spots of resistance: Transit centers as breeding grounds for airborne ARG-carrying bacteriophages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1