用于空间选择性神经元激活的透明共形微线圈阵列

Device Pub Date : 2024-04-19 Epub Date: 2024-03-05 DOI:10.1016/j.device.2024.100290
Vineeth Raghuram, Aditya D Datye, Shelley I Fried, Brian P Timko
{"title":"用于空间选择性神经元激活的透明共形微线圈阵列","authors":"Vineeth Raghuram, Aditya D Datye, Shelley I Fried, Brian P Timko","doi":"10.1016/j.device.2024.100290","DOIUrl":null,"url":null,"abstract":"<p><p>Micromagnetic stimulation (μMS) using small, implantable microcoils is a promising method for achieving neuronal activation with high spatial resolution and low toxicity. Herein, we report a microcoil array for localized activation of cortical neurons and retinal ganglion cells. We developed a computational model to relate the electric field gradient (activating function) to the geometry and arrangement of microcoils, and selected a design that produced an anisotropic region of activation <50 μm wide. The device was comprised of an SU-8/Cu/SU-8 tri-layer structure, which was flexible, transparent and conformal and featured four individually-addressable microcoils. Interfaced with cortex or retina explants from GCaMP6-expressing mice, we observed that individual neurons localized within 40 μm of a microcoil tip could be activated repeatedly and in a dose- (power-) dependent fashion. These results demonstrate the potential of μMS devices for brain-machine interfaces and could enable routes toward bioelectronic therapies including prosthetic vision devices.</p>","PeriodicalId":101324,"journal":{"name":"Device","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343507/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transparent and Conformal Microcoil Arrays for Spatially Selective Neuronal Activation.\",\"authors\":\"Vineeth Raghuram, Aditya D Datye, Shelley I Fried, Brian P Timko\",\"doi\":\"10.1016/j.device.2024.100290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Micromagnetic stimulation (μMS) using small, implantable microcoils is a promising method for achieving neuronal activation with high spatial resolution and low toxicity. Herein, we report a microcoil array for localized activation of cortical neurons and retinal ganglion cells. We developed a computational model to relate the electric field gradient (activating function) to the geometry and arrangement of microcoils, and selected a design that produced an anisotropic region of activation <50 μm wide. The device was comprised of an SU-8/Cu/SU-8 tri-layer structure, which was flexible, transparent and conformal and featured four individually-addressable microcoils. Interfaced with cortex or retina explants from GCaMP6-expressing mice, we observed that individual neurons localized within 40 μm of a microcoil tip could be activated repeatedly and in a dose- (power-) dependent fashion. These results demonstrate the potential of μMS devices for brain-machine interfaces and could enable routes toward bioelectronic therapies including prosthetic vision devices.</p>\",\"PeriodicalId\":101324,\"journal\":{\"name\":\"Device\",\"volume\":\"2 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343507/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Device\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.device.2024.100290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Device","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.device.2024.100290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用可植入的小型微线圈进行微磁刺激(μMS)是一种很有前途的方法,可实现高空间分辨率和低毒性的神经元激活。在此,我们报告了一种用于局部激活大脑皮层神经元和视网膜神经节细胞的微线圈阵列。我们建立了一个计算模型,将电场梯度(激活功能)与微线圈的几何形状和排列联系起来,并选择了一种能产生各向异性激活区域的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transparent and Conformal Microcoil Arrays for Spatially Selective Neuronal Activation.

Micromagnetic stimulation (μMS) using small, implantable microcoils is a promising method for achieving neuronal activation with high spatial resolution and low toxicity. Herein, we report a microcoil array for localized activation of cortical neurons and retinal ganglion cells. We developed a computational model to relate the electric field gradient (activating function) to the geometry and arrangement of microcoils, and selected a design that produced an anisotropic region of activation <50 μm wide. The device was comprised of an SU-8/Cu/SU-8 tri-layer structure, which was flexible, transparent and conformal and featured four individually-addressable microcoils. Interfaced with cortex or retina explants from GCaMP6-expressing mice, we observed that individual neurons localized within 40 μm of a microcoil tip could be activated repeatedly and in a dose- (power-) dependent fashion. These results demonstrate the potential of μMS devices for brain-machine interfaces and could enable routes toward bioelectronic therapies including prosthetic vision devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
Experimental Full-volume Airway Approximation for Assessing Breath-dependent Regional Aerosol Deposition. An implantable system for opioid safety. Soft robotics for human health Beyond 25 years of biomedical innovation in nano-bioelectronics Endowing TENGs with sequential logic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1