Jing-Da Yao , Kang Luo , Jian Wu , Hong-Liang Yi , He-Ping Tan
{"title":"利用晶格玻尔兹曼法研究电场对通道流沸腾中气泡动力学的影响","authors":"Jing-Da Yao , Kang Luo , Jian Wu , Hong-Liang Yi , He-Ping Tan","doi":"10.1016/j.ijheatfluidflow.2024.109550","DOIUrl":null,"url":null,"abstract":"<div><p>The application of an electric field in flow boiling has been proven to effectively enhance heat transfer and reduce pressure drop instability. This study aims to elucidate the mechanism of the impact of electric fields on flow boiling bubble dynamics through the pseudo-potential lattice Boltzmann method (LBM). The interplay between the externally imposed electric field incoming velocity in different gravity conditions examined. These factors can regulate flow boiling heat transfer in horizontal channel. The results demonstrate a competitive relationship between electric field and gravity and between incoming velocity and gravity. Therefore, under higher gravity condition, an electric field is less effective to enhance flow boiling heat transfer than in low gravity condition and vice versa. Additionally, there exists a synergistic relationship between incoming velocity and the electric field that mitigates their competition. Moreover, when considering multipoint nucleation processes, applying an electric field can attenuates bubble–bubble interactions and inhibit large bubble formation so as to accelerates bubble condensation in supercooled flows and enhance boiling heat transfer. This work provides comprehensive physical insights into the mechanism of electric field to enhance the heat transfer in flow boiling, which is instructive for the development of electrohydrodynamic technique in flow boiling enhancement.</p></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"109 ","pages":"Article 109550"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of electric field on bubble dynamics in channel flow boiling using lattice Boltzmann method\",\"authors\":\"Jing-Da Yao , Kang Luo , Jian Wu , Hong-Liang Yi , He-Ping Tan\",\"doi\":\"10.1016/j.ijheatfluidflow.2024.109550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The application of an electric field in flow boiling has been proven to effectively enhance heat transfer and reduce pressure drop instability. This study aims to elucidate the mechanism of the impact of electric fields on flow boiling bubble dynamics through the pseudo-potential lattice Boltzmann method (LBM). The interplay between the externally imposed electric field incoming velocity in different gravity conditions examined. These factors can regulate flow boiling heat transfer in horizontal channel. The results demonstrate a competitive relationship between electric field and gravity and between incoming velocity and gravity. Therefore, under higher gravity condition, an electric field is less effective to enhance flow boiling heat transfer than in low gravity condition and vice versa. Additionally, there exists a synergistic relationship between incoming velocity and the electric field that mitigates their competition. Moreover, when considering multipoint nucleation processes, applying an electric field can attenuates bubble–bubble interactions and inhibit large bubble formation so as to accelerates bubble condensation in supercooled flows and enhance boiling heat transfer. This work provides comprehensive physical insights into the mechanism of electric field to enhance the heat transfer in flow boiling, which is instructive for the development of electrohydrodynamic technique in flow boiling enhancement.</p></div>\",\"PeriodicalId\":335,\"journal\":{\"name\":\"International Journal of Heat and Fluid Flow\",\"volume\":\"109 \",\"pages\":\"Article 109550\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142727X24002753\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X24002753","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Effect of electric field on bubble dynamics in channel flow boiling using lattice Boltzmann method
The application of an electric field in flow boiling has been proven to effectively enhance heat transfer and reduce pressure drop instability. This study aims to elucidate the mechanism of the impact of electric fields on flow boiling bubble dynamics through the pseudo-potential lattice Boltzmann method (LBM). The interplay between the externally imposed electric field incoming velocity in different gravity conditions examined. These factors can regulate flow boiling heat transfer in horizontal channel. The results demonstrate a competitive relationship between electric field and gravity and between incoming velocity and gravity. Therefore, under higher gravity condition, an electric field is less effective to enhance flow boiling heat transfer than in low gravity condition and vice versa. Additionally, there exists a synergistic relationship between incoming velocity and the electric field that mitigates their competition. Moreover, when considering multipoint nucleation processes, applying an electric field can attenuates bubble–bubble interactions and inhibit large bubble formation so as to accelerates bubble condensation in supercooled flows and enhance boiling heat transfer. This work provides comprehensive physical insights into the mechanism of electric field to enhance the heat transfer in flow boiling, which is instructive for the development of electrohydrodynamic technique in flow boiling enhancement.
期刊介绍:
The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows.
Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.