基于自适应聚类的多目标沙猫群优化,用于解决多模式多目标优化问题

IF 4.4 2区 数学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Mathematics and Computers in Simulation Pub Date : 2024-08-23 DOI:10.1016/j.matcom.2024.08.022
Yanbiao Niu , Xuefeng Yan , Weiping Zeng , Yongzhen Wang , Yanzhao Niu
{"title":"基于自适应聚类的多目标沙猫群优化,用于解决多模式多目标优化问题","authors":"Yanbiao Niu ,&nbsp;Xuefeng Yan ,&nbsp;Weiping Zeng ,&nbsp;Yongzhen Wang ,&nbsp;Yanzhao Niu","doi":"10.1016/j.matcom.2024.08.022","DOIUrl":null,"url":null,"abstract":"<div><p>Multimodal multi-objective optimization problems (MMOPs) represent a highly challenging class of complex problems, characterized by the presence of several Pareto solution sets in the decision space which map to the identical Pareto-optimal front. The goal of solving MMOPs is to find multiple distinct Pareto sets to sustain a balance between good convergence and diversification of populations. In this paper, a multi-objective sand cat swarm optimization algorithm (MOSCSO) is developed to address MMOPs. In the MOSCSO algorithm, an adaptive clustering-based specific congestion distance technique is introduced to compute the level of crowdedness. This ensures an even distribution of individuals, avoiding excessive crowding in the local area. Subsequently, enhanced search-and-attack prey updating mechanisms are designed to effectively increase not only the exploration and exploitation capabilities of the algorithm but also to enhance the diversity of the swarm in both the decision space and the objective space. To verify the effectiveness of the proposed algorithm, the MOSCSO is applied to solve the CEC2019 complex multimodal benchmark function. The experimental outcomes illustrate that the proposed approach possesses excellent performance in searching for Pareto solutions compared with other algorithms. Meanwhile, the method is also employed to address the map-based distance minimization problem, which further validates the usefulness of the MOSCSO.</p></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"227 ","pages":"Pages 391-404"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective sand cat swarm optimization based on adaptive clustering for solving multimodal multi-objective optimization problems\",\"authors\":\"Yanbiao Niu ,&nbsp;Xuefeng Yan ,&nbsp;Weiping Zeng ,&nbsp;Yongzhen Wang ,&nbsp;Yanzhao Niu\",\"doi\":\"10.1016/j.matcom.2024.08.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multimodal multi-objective optimization problems (MMOPs) represent a highly challenging class of complex problems, characterized by the presence of several Pareto solution sets in the decision space which map to the identical Pareto-optimal front. The goal of solving MMOPs is to find multiple distinct Pareto sets to sustain a balance between good convergence and diversification of populations. In this paper, a multi-objective sand cat swarm optimization algorithm (MOSCSO) is developed to address MMOPs. In the MOSCSO algorithm, an adaptive clustering-based specific congestion distance technique is introduced to compute the level of crowdedness. This ensures an even distribution of individuals, avoiding excessive crowding in the local area. Subsequently, enhanced search-and-attack prey updating mechanisms are designed to effectively increase not only the exploration and exploitation capabilities of the algorithm but also to enhance the diversity of the swarm in both the decision space and the objective space. To verify the effectiveness of the proposed algorithm, the MOSCSO is applied to solve the CEC2019 complex multimodal benchmark function. The experimental outcomes illustrate that the proposed approach possesses excellent performance in searching for Pareto solutions compared with other algorithms. Meanwhile, the method is also employed to address the map-based distance minimization problem, which further validates the usefulness of the MOSCSO.</p></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"227 \",\"pages\":\"Pages 391-404\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424003252\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003252","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

多模式多目标优化问题(MMOPs)是一类极具挑战性的复杂问题,其特点是在决策空间中存在多个帕累托解集,这些解集映射到相同的帕累托最优前沿。解决多目标最优问题的目标是找到多个不同的帕雷托集,以保持良好的收敛性和种群多样化之间的平衡。本文开发了一种多目标沙猫群优化算法(MOSCSO)来解决 MMOPs。在 MOSCSO 算法中,引入了一种基于聚类的自适应特定拥挤距离技术来计算拥挤程度。这确保了个体的均匀分布,避免了局部区域的过度拥挤。随后,设计了增强型搜索和攻击猎物更新机制,不仅有效提高了算法的探索和利用能力,还增强了蜂群在决策空间和目标空间的多样性。为了验证所提算法的有效性,我们将 MOSCSO 应用于求解 CEC2019 复杂多模态基准函数。实验结果表明,与其他算法相比,所提出的方法在搜索帕累托解时具有出色的性能。同时,该方法还被用于解决基于地图的距离最小化问题,进一步验证了 MOSCSO 的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-objective sand cat swarm optimization based on adaptive clustering for solving multimodal multi-objective optimization problems

Multimodal multi-objective optimization problems (MMOPs) represent a highly challenging class of complex problems, characterized by the presence of several Pareto solution sets in the decision space which map to the identical Pareto-optimal front. The goal of solving MMOPs is to find multiple distinct Pareto sets to sustain a balance between good convergence and diversification of populations. In this paper, a multi-objective sand cat swarm optimization algorithm (MOSCSO) is developed to address MMOPs. In the MOSCSO algorithm, an adaptive clustering-based specific congestion distance technique is introduced to compute the level of crowdedness. This ensures an even distribution of individuals, avoiding excessive crowding in the local area. Subsequently, enhanced search-and-attack prey updating mechanisms are designed to effectively increase not only the exploration and exploitation capabilities of the algorithm but also to enhance the diversity of the swarm in both the decision space and the objective space. To verify the effectiveness of the proposed algorithm, the MOSCSO is applied to solve the CEC2019 complex multimodal benchmark function. The experimental outcomes illustrate that the proposed approach possesses excellent performance in searching for Pareto solutions compared with other algorithms. Meanwhile, the method is also employed to address the map-based distance minimization problem, which further validates the usefulness of the MOSCSO.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Computers in Simulation
Mathematics and Computers in Simulation 数学-计算机:跨学科应用
CiteScore
8.90
自引率
4.30%
发文量
335
审稿时长
54 days
期刊介绍: The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles. Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO. Topics covered by the journal include mathematical tools in: •The foundations of systems modelling •Numerical analysis and the development of algorithms for simulation They also include considerations about computer hardware for simulation and about special software and compilers. The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research. The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.
期刊最新文献
An innovative fractional grey system model and its application Large time solution for collisional breakage model: Laplace transformation based accelerated homotopy perturbation method Efficient second-order accurate exponential time differencing for time-fractional advection–diffusion–reaction equations with variable coefficients Multi-objective optimization of the appendages of a sailing yacht using the Normal Boundary Intersection method Dynamic analysis and data-driven inference of a fractional-order SEIHDR epidemic model with variable parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1