{"title":"准轴向激光束内的环形相位拓扑结构","authors":"Jinzhan Zhong, Houan Teng, Qiwen Zhan","doi":"10.1038/s42005-024-01782-8","DOIUrl":null,"url":null,"abstract":"Control of topologies in structured light fields with multi-degrees of freedom integrates fundamental optical physics and topological invariance. Beyond the simple phase vortex, three-dimensional (3D) topological singularities and related nonsingular textures have recently gained significant interest. Here, we experimentally demonstrate the creation of a family of toroidal phase topologies within paraxial laser beams. By employing single two-dimensional (2D) phase control, we generate propagating 3D topological textures, effectively embodying the topological configuration of a four-dimensional (4D) parameter space. The resulting light fields exhibit amplitude isosurfaces of toroidal vortices and hopfionic phase textures, both controlled by topological charges. The ability to prepare scalar phase textures of light offers new insights into the high-dimensional control of complex structured textures and may find significant applications in light-matter interactions, optical manipulation, and optical information encoding. Exploring non-trivial topologies and related properties has long been a fascinating and challenging task in mathematics and physics. The authors experimentally demonstrate the realization of optical toroidal vortices and hopfionic phase textures within paraxial continuous wave laser beams, which may provide new insight for topologically structured light fields.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-6"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01782-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Toroidal phase topologies within paraxial laser beams\",\"authors\":\"Jinzhan Zhong, Houan Teng, Qiwen Zhan\",\"doi\":\"10.1038/s42005-024-01782-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Control of topologies in structured light fields with multi-degrees of freedom integrates fundamental optical physics and topological invariance. Beyond the simple phase vortex, three-dimensional (3D) topological singularities and related nonsingular textures have recently gained significant interest. Here, we experimentally demonstrate the creation of a family of toroidal phase topologies within paraxial laser beams. By employing single two-dimensional (2D) phase control, we generate propagating 3D topological textures, effectively embodying the topological configuration of a four-dimensional (4D) parameter space. The resulting light fields exhibit amplitude isosurfaces of toroidal vortices and hopfionic phase textures, both controlled by topological charges. The ability to prepare scalar phase textures of light offers new insights into the high-dimensional control of complex structured textures and may find significant applications in light-matter interactions, optical manipulation, and optical information encoding. Exploring non-trivial topologies and related properties has long been a fascinating and challenging task in mathematics and physics. The authors experimentally demonstrate the realization of optical toroidal vortices and hopfionic phase textures within paraxial continuous wave laser beams, which may provide new insight for topologically structured light fields.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-6\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01782-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01782-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01782-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Toroidal phase topologies within paraxial laser beams
Control of topologies in structured light fields with multi-degrees of freedom integrates fundamental optical physics and topological invariance. Beyond the simple phase vortex, three-dimensional (3D) topological singularities and related nonsingular textures have recently gained significant interest. Here, we experimentally demonstrate the creation of a family of toroidal phase topologies within paraxial laser beams. By employing single two-dimensional (2D) phase control, we generate propagating 3D topological textures, effectively embodying the topological configuration of a four-dimensional (4D) parameter space. The resulting light fields exhibit amplitude isosurfaces of toroidal vortices and hopfionic phase textures, both controlled by topological charges. The ability to prepare scalar phase textures of light offers new insights into the high-dimensional control of complex structured textures and may find significant applications in light-matter interactions, optical manipulation, and optical information encoding. Exploring non-trivial topologies and related properties has long been a fascinating and challenging task in mathematics and physics. The authors experimentally demonstrate the realization of optical toroidal vortices and hopfionic phase textures within paraxial continuous wave laser beams, which may provide new insight for topologically structured light fields.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.