Polina Emeliyanova, Laura M Parkes, Stephen R Williams, Caroline Lea-Carnall
{"title":"3T 下人类视觉皮层谷氨酸 T2 双指数弛豫的证据:功能 MRS 研究。","authors":"Polina Emeliyanova, Laura M Parkes, Stephen R Williams, Caroline Lea-Carnall","doi":"10.1002/nbm.5240","DOIUrl":null,"url":null,"abstract":"<p><p>Functional magnetic resonance spectroscopy (fMRS) measures dynamic changes in metabolite concentration in response to neural stimulation. The biophysical basis of these changes remains unclear. One hypothesis suggests that an increase or decrease in the glutamate signal detected by fMRS could be due to neurotransmitter movements between cellular compartments with different T<sub>2</sub> relaxation times. Previous studies reporting glutamate (Glu) T<sub>2</sub> values have generally sampled at echo times (TEs) within the range of 30-450 ms, which is not adequate to observe a component with short T<sub>2</sub> (<20 ms). Here, we acquire MRS measurements for Glu, (t) total creatine (tCr) and total N-acetylaspartate (tNAA) from the visual cortex in 14 healthy participants at a range of TE values between 9.3-280 ms during short blocks (64 s) of flickering checkerboards and rest to examine both the short- and long-T<sub>2</sub> components of the curve. We fit monoexponential and biexponential Glu, tCr and tNAA T<sub>2</sub> relaxation curves for rest and stimulation and use Akaike information criterion to assess best model fit. We also include power calculations for detection of a 2% shift of Glu between compartments for each TE. Using pooled data over all participants at rest, we observed a short Glu T<sub>2</sub>-component with T<sub>2</sub> = 10 ms and volume fraction of 0.35, a short tCr T<sub>2</sub>-component with T<sub>2</sub> = 26 ms and volume fraction of 0.25 and a short tNAA T<sub>2</sub>-component around 15 ms with volume fraction of 0.34. No statistically significant change in Glu, tCr and tNAA signal during stimulation was detected at any TE. The volume fractions of short-T<sub>2</sub> component between rest and active conditions were not statistically different. This study provides evidence for a short T<sub>2</sub>-component for Glu, tCr and tNAA but no evidence to support the hypothesis of task-related changes in glutamate distribution between short and long T<sub>2</sub> compartments.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5240"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence for biexponential glutamate T<sub>2</sub> relaxation in human visual cortex at 3T: A functional MRS study.\",\"authors\":\"Polina Emeliyanova, Laura M Parkes, Stephen R Williams, Caroline Lea-Carnall\",\"doi\":\"10.1002/nbm.5240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Functional magnetic resonance spectroscopy (fMRS) measures dynamic changes in metabolite concentration in response to neural stimulation. The biophysical basis of these changes remains unclear. One hypothesis suggests that an increase or decrease in the glutamate signal detected by fMRS could be due to neurotransmitter movements between cellular compartments with different T<sub>2</sub> relaxation times. Previous studies reporting glutamate (Glu) T<sub>2</sub> values have generally sampled at echo times (TEs) within the range of 30-450 ms, which is not adequate to observe a component with short T<sub>2</sub> (<20 ms). Here, we acquire MRS measurements for Glu, (t) total creatine (tCr) and total N-acetylaspartate (tNAA) from the visual cortex in 14 healthy participants at a range of TE values between 9.3-280 ms during short blocks (64 s) of flickering checkerboards and rest to examine both the short- and long-T<sub>2</sub> components of the curve. We fit monoexponential and biexponential Glu, tCr and tNAA T<sub>2</sub> relaxation curves for rest and stimulation and use Akaike information criterion to assess best model fit. We also include power calculations for detection of a 2% shift of Glu between compartments for each TE. Using pooled data over all participants at rest, we observed a short Glu T<sub>2</sub>-component with T<sub>2</sub> = 10 ms and volume fraction of 0.35, a short tCr T<sub>2</sub>-component with T<sub>2</sub> = 26 ms and volume fraction of 0.25 and a short tNAA T<sub>2</sub>-component around 15 ms with volume fraction of 0.34. No statistically significant change in Glu, tCr and tNAA signal during stimulation was detected at any TE. The volume fractions of short-T<sub>2</sub> component between rest and active conditions were not statistically different. This study provides evidence for a short T<sub>2</sub>-component for Glu, tCr and tNAA but no evidence to support the hypothesis of task-related changes in glutamate distribution between short and long T<sub>2</sub> compartments.</p>\",\"PeriodicalId\":19309,\"journal\":{\"name\":\"NMR in Biomedicine\",\"volume\":\" \",\"pages\":\"e5240\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NMR in Biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/nbm.5240\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5240","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Evidence for biexponential glutamate T2 relaxation in human visual cortex at 3T: A functional MRS study.
Functional magnetic resonance spectroscopy (fMRS) measures dynamic changes in metabolite concentration in response to neural stimulation. The biophysical basis of these changes remains unclear. One hypothesis suggests that an increase or decrease in the glutamate signal detected by fMRS could be due to neurotransmitter movements between cellular compartments with different T2 relaxation times. Previous studies reporting glutamate (Glu) T2 values have generally sampled at echo times (TEs) within the range of 30-450 ms, which is not adequate to observe a component with short T2 (<20 ms). Here, we acquire MRS measurements for Glu, (t) total creatine (tCr) and total N-acetylaspartate (tNAA) from the visual cortex in 14 healthy participants at a range of TE values between 9.3-280 ms during short blocks (64 s) of flickering checkerboards and rest to examine both the short- and long-T2 components of the curve. We fit monoexponential and biexponential Glu, tCr and tNAA T2 relaxation curves for rest and stimulation and use Akaike information criterion to assess best model fit. We also include power calculations for detection of a 2% shift of Glu between compartments for each TE. Using pooled data over all participants at rest, we observed a short Glu T2-component with T2 = 10 ms and volume fraction of 0.35, a short tCr T2-component with T2 = 26 ms and volume fraction of 0.25 and a short tNAA T2-component around 15 ms with volume fraction of 0.34. No statistically significant change in Glu, tCr and tNAA signal during stimulation was detected at any TE. The volume fractions of short-T2 component between rest and active conditions were not statistically different. This study provides evidence for a short T2-component for Glu, tCr and tNAA but no evidence to support the hypothesis of task-related changes in glutamate distribution between short and long T2 compartments.
期刊介绍:
NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.