{"title":"作为微生物生物刺激剂的产素细菌可改善水培系统中番茄(Solanum lycopersicum L.)幼苗的生长。","authors":"Livia Pappalettere, Susanna Bartolini, Annita Toffanin","doi":"10.3390/biotech13030032","DOIUrl":null,"url":null,"abstract":"<p><p>Seven auxin-producing endophytic bacterial strains (<i>Azospirillum</i> spp., <i>Methylobacterium symbioticum</i>, <i>Bacillus</i> spp.), and two different combinations of these strains were used to verify their influence on tomato during germination and development in hydroponic conditions where, as a novelty for Canestrino di Lucca cultivar, endophytic bacteria were inoculated. To emphasize the presence of bacterial auxins in roots and stems of seedlings, both in situ staining qualitative assessment and quantitative analysis were carried out. Moreover, hypogeal and epigeal growth of the plantlets were measured, and correlation analyses were conducted to examine the relationship between the amount of indolacetic acid (IAA) produced by the bacterial strains and root and stem parameters. Plantlets treated with microbial inoculants showed a significant increase in the survival rate compared to the control treatment. The best results as IAA producers were from <i>Azospirillum baldaniorum</i> Sp245 and <i>A. brasilense</i> Cd, which also induced significant root growth. On the other hand, <i>Bacillus amyloliquefaciens</i> and <i>B. licheniformis</i> induced the best rates in stem growth. These findings highlight the potential for using endophytic bacterial strains in a hydroponic co-cultivation system that enables inoculating plantlets, at an early stage of growth (5 days old).</p>","PeriodicalId":34490,"journal":{"name":"BioTech","volume":"13 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348165/pdf/","citationCount":"0","resultStr":"{\"title\":\"Auxin-Producing Bacteria Used as Microbial Biostimulants Improve the Growth of Tomato (<i>Solanum lycopersicum</i> L.) Seedlings in Hydroponic Systems.\",\"authors\":\"Livia Pappalettere, Susanna Bartolini, Annita Toffanin\",\"doi\":\"10.3390/biotech13030032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Seven auxin-producing endophytic bacterial strains (<i>Azospirillum</i> spp., <i>Methylobacterium symbioticum</i>, <i>Bacillus</i> spp.), and two different combinations of these strains were used to verify their influence on tomato during germination and development in hydroponic conditions where, as a novelty for Canestrino di Lucca cultivar, endophytic bacteria were inoculated. To emphasize the presence of bacterial auxins in roots and stems of seedlings, both in situ staining qualitative assessment and quantitative analysis were carried out. Moreover, hypogeal and epigeal growth of the plantlets were measured, and correlation analyses were conducted to examine the relationship between the amount of indolacetic acid (IAA) produced by the bacterial strains and root and stem parameters. Plantlets treated with microbial inoculants showed a significant increase in the survival rate compared to the control treatment. The best results as IAA producers were from <i>Azospirillum baldaniorum</i> Sp245 and <i>A. brasilense</i> Cd, which also induced significant root growth. On the other hand, <i>Bacillus amyloliquefaciens</i> and <i>B. licheniformis</i> induced the best rates in stem growth. These findings highlight the potential for using endophytic bacterial strains in a hydroponic co-cultivation system that enables inoculating plantlets, at an early stage of growth (5 days old).</p>\",\"PeriodicalId\":34490,\"journal\":{\"name\":\"BioTech\",\"volume\":\"13 3\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348165/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioTech\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/biotech13030032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biotech13030032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
在水培条件下,作为 Canestrino di Lucca 栽培品种的一种创新,内生细菌被接种到番茄的萌芽和生长过程中,我们使用了七种产生辅酶的内生细菌菌株(Azospirillum 菌属、共生 Methylobacterium 菌属、芽孢杆菌属)以及这些菌株的两种不同组合来验证它们对番茄的影响。为了强调秧苗根部和茎部存在细菌素,进行了原位染色定性评估和定量分析。此外,还测量了小苗的下胚芽生长和上胚芽生长,并进行了相关分析,以研究细菌菌株产生的吲哚乙酸(IAA)量与根和茎参数之间的关系。与对照处理相比,使用微生物接种剂处理的小苗成活率显著提高。产生 IAA 效果最好的是 Azospirillum baldaniorum Sp245 和 A. brasilense Cd,它们也能诱导根系显著生长。另一方面,淀粉芽孢杆菌(Bacillus amyloliquefaciens)和地衣芽孢杆菌(B. licheniformis)诱导的茎干生长率最高。这些发现凸显了在水培联合栽培系统中使用内生细菌菌株的潜力,该系统可在小苗生长初期(5 天大)接种内生细菌菌株。
Auxin-Producing Bacteria Used as Microbial Biostimulants Improve the Growth of Tomato (Solanum lycopersicum L.) Seedlings in Hydroponic Systems.
Seven auxin-producing endophytic bacterial strains (Azospirillum spp., Methylobacterium symbioticum, Bacillus spp.), and two different combinations of these strains were used to verify their influence on tomato during germination and development in hydroponic conditions where, as a novelty for Canestrino di Lucca cultivar, endophytic bacteria were inoculated. To emphasize the presence of bacterial auxins in roots and stems of seedlings, both in situ staining qualitative assessment and quantitative analysis were carried out. Moreover, hypogeal and epigeal growth of the plantlets were measured, and correlation analyses were conducted to examine the relationship between the amount of indolacetic acid (IAA) produced by the bacterial strains and root and stem parameters. Plantlets treated with microbial inoculants showed a significant increase in the survival rate compared to the control treatment. The best results as IAA producers were from Azospirillum baldaniorum Sp245 and A. brasilense Cd, which also induced significant root growth. On the other hand, Bacillus amyloliquefaciens and B. licheniformis induced the best rates in stem growth. These findings highlight the potential for using endophytic bacterial strains in a hydroponic co-cultivation system that enables inoculating plantlets, at an early stage of growth (5 days old).