Haiyang Yuan, Chen Zhu, Yu Hou, Hua Gui Yang and Haifeng Wang*,
{"title":"优化晶格氮配位,打破金属氮化物电催化氮还原的性能限制","authors":"Haiyang Yuan, Chen Zhu, Yu Hou, Hua Gui Yang and Haifeng Wang*, ","doi":"10.1021/jacsau.4c0037710.1021/jacsau.4c00377","DOIUrl":null,"url":null,"abstract":"<p >Metal nitrides (MNs) are attracting enormous attention in the electrocatalytic nitrogen reduction reaction (NRR) because of their rich lattice nitrogen (N<sub>lat</sub>) and the unique ability of N<sub>lat</sub> vacancies to activate N<sub>2</sub>. However, continuing controversy exists on whether MNs are catalytically active for NRR or produce NH<sub>3</sub> via the reductive decomposition of N<sub>lat</sub> without N<sub>2</sub> activation in the in situ electrochemical conditions, let alone the rational design of high-performance MN catalysts. Herein, we focus on the common rocksalt-type MN(100) catalysts and establish a quantitative theoretical framework based on the first-principles microkinetic simulations to resolve these puzzles. The results show that the Mars-van Krevelen mechanism is kinetically more favorable to drive the NRR on a majority of MNs, in which N<sub>lat</sub> plays a pivotal role in achieving the Volmer process and N<sub>2</sub> activation. In terms of stability, activity, and selectivity, we find that MN(100) with moderate formation energy of N<sub>lat</sub> vacancy (<i>E</i><sub>vac</sub>) can achieve maximum activity and maintain electrochemical stability, while low- or high-<i>E</i><sub>vac</sub> ones are either unstable or catalytically less active. Unfortunately, owing to the five-coordinate structural feature of N<sub>lat</sub> on rocksalt-type MN(100), this maximum activity is limited to a yield of NH<sub>3</sub> of only ∼10<sup>–15</sup> mol s<sup>–1</sup> cm<sup>–2</sup>. Intriguingly, we identify a volcano-type activity-regulating role of the local structural features of N<sub>lat</sub> and show that the four-coordinate N<sub>lat</sub> can exhibit optimal activity and overcome the performance limitation, while less coordinated N<sub>lat</sub> fails. This work provides, arguably for the first time, an in-depth theoretical insight into the activity and stability paradox of MNs for NRR and underlines the importance of reaction kinetic assessment in comparison with the prevailing simple thermodynamic analysis.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"4 8","pages":"3038–3048 3038–3048"},"PeriodicalIF":8.5000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00377","citationCount":"0","resultStr":"{\"title\":\"Optimizing the Lattice Nitrogen Coordination to Break the Performance Limitation of Metal Nitrides for Electrocatalytic Nitrogen Reduction\",\"authors\":\"Haiyang Yuan, Chen Zhu, Yu Hou, Hua Gui Yang and Haifeng Wang*, \",\"doi\":\"10.1021/jacsau.4c0037710.1021/jacsau.4c00377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Metal nitrides (MNs) are attracting enormous attention in the electrocatalytic nitrogen reduction reaction (NRR) because of their rich lattice nitrogen (N<sub>lat</sub>) and the unique ability of N<sub>lat</sub> vacancies to activate N<sub>2</sub>. However, continuing controversy exists on whether MNs are catalytically active for NRR or produce NH<sub>3</sub> via the reductive decomposition of N<sub>lat</sub> without N<sub>2</sub> activation in the in situ electrochemical conditions, let alone the rational design of high-performance MN catalysts. Herein, we focus on the common rocksalt-type MN(100) catalysts and establish a quantitative theoretical framework based on the first-principles microkinetic simulations to resolve these puzzles. The results show that the Mars-van Krevelen mechanism is kinetically more favorable to drive the NRR on a majority of MNs, in which N<sub>lat</sub> plays a pivotal role in achieving the Volmer process and N<sub>2</sub> activation. In terms of stability, activity, and selectivity, we find that MN(100) with moderate formation energy of N<sub>lat</sub> vacancy (<i>E</i><sub>vac</sub>) can achieve maximum activity and maintain electrochemical stability, while low- or high-<i>E</i><sub>vac</sub> ones are either unstable or catalytically less active. Unfortunately, owing to the five-coordinate structural feature of N<sub>lat</sub> on rocksalt-type MN(100), this maximum activity is limited to a yield of NH<sub>3</sub> of only ∼10<sup>–15</sup> mol s<sup>–1</sup> cm<sup>–2</sup>. Intriguingly, we identify a volcano-type activity-regulating role of the local structural features of N<sub>lat</sub> and show that the four-coordinate N<sub>lat</sub> can exhibit optimal activity and overcome the performance limitation, while less coordinated N<sub>lat</sub> fails. This work provides, arguably for the first time, an in-depth theoretical insight into the activity and stability paradox of MNs for NRR and underlines the importance of reaction kinetic assessment in comparison with the prevailing simple thermodynamic analysis.</p>\",\"PeriodicalId\":94060,\"journal\":{\"name\":\"JACS Au\",\"volume\":\"4 8\",\"pages\":\"3038–3048 3038–3048\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00377\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacsau.4c00377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c00377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimizing the Lattice Nitrogen Coordination to Break the Performance Limitation of Metal Nitrides for Electrocatalytic Nitrogen Reduction
Metal nitrides (MNs) are attracting enormous attention in the electrocatalytic nitrogen reduction reaction (NRR) because of their rich lattice nitrogen (Nlat) and the unique ability of Nlat vacancies to activate N2. However, continuing controversy exists on whether MNs are catalytically active for NRR or produce NH3 via the reductive decomposition of Nlat without N2 activation in the in situ electrochemical conditions, let alone the rational design of high-performance MN catalysts. Herein, we focus on the common rocksalt-type MN(100) catalysts and establish a quantitative theoretical framework based on the first-principles microkinetic simulations to resolve these puzzles. The results show that the Mars-van Krevelen mechanism is kinetically more favorable to drive the NRR on a majority of MNs, in which Nlat plays a pivotal role in achieving the Volmer process and N2 activation. In terms of stability, activity, and selectivity, we find that MN(100) with moderate formation energy of Nlat vacancy (Evac) can achieve maximum activity and maintain electrochemical stability, while low- or high-Evac ones are either unstable or catalytically less active. Unfortunately, owing to the five-coordinate structural feature of Nlat on rocksalt-type MN(100), this maximum activity is limited to a yield of NH3 of only ∼10–15 mol s–1 cm–2. Intriguingly, we identify a volcano-type activity-regulating role of the local structural features of Nlat and show that the four-coordinate Nlat can exhibit optimal activity and overcome the performance limitation, while less coordinated Nlat fails. This work provides, arguably for the first time, an in-depth theoretical insight into the activity and stability paradox of MNs for NRR and underlines the importance of reaction kinetic assessment in comparison with the prevailing simple thermodynamic analysis.