长髓内钉与短髓内钉治疗反向转子前骨折:生物力学研究

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Medical Engineering & Physics Pub Date : 2024-08-13 DOI:10.1016/j.medengphy.2024.104230
Gilles Udin , Lore Hoffmann , Fabio Becce , Olivier Borens , Alexandre Terrier
{"title":"长髓内钉与短髓内钉治疗反向转子前骨折:生物力学研究","authors":"Gilles Udin ,&nbsp;Lore Hoffmann ,&nbsp;Fabio Becce ,&nbsp;Olivier Borens ,&nbsp;Alexandre Terrier","doi":"10.1016/j.medengphy.2024.104230","DOIUrl":null,"url":null,"abstract":"<div><p>There is currently no definitive evidence for the implant of choice for the treatment of reverse pertrochanteric fractures. Here, we aimed to compare the stability provided by two implant options: long and short intramedullary nails.</p><p>We performed finite element simulations of different patterns of reverse pertrochanteric fractures with varying bone quality, and compared the short vs long nail stabilization under physiological loads. For each variable combination, the micromotions at the fracture site, bone strain, and implant stress were computed.</p><p>Mean micromotions at the fracture surface and absolute and relative fracture surface with micromotions &gt;150 µm were slightly lower with the short nail (8%, 3%, and 3%, respectively). The distal fracture extension negatively affected the stability, with increasing micromotions on the medial side. Bone strain above 1 % was not affected by the nail length. Fatigue stresses were similar for both implants, and no volume was found above the yield and ultimate stress in the tested conditions.</p><p>This simulation study shows no benefit of long nails for the investigated patterns of reverse pertrochanteric fractures, with similar micromotions at the fracture site, bone strain, and implant stress.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350453324001310/pdfft?md5=1fe9fee30f4491794c3f79c37c757e0b&pid=1-s2.0-S1350453324001310-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Long vs short intramedullary nails for reverse pertrochanteric fractures: A biomechanical study\",\"authors\":\"Gilles Udin ,&nbsp;Lore Hoffmann ,&nbsp;Fabio Becce ,&nbsp;Olivier Borens ,&nbsp;Alexandre Terrier\",\"doi\":\"10.1016/j.medengphy.2024.104230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There is currently no definitive evidence for the implant of choice for the treatment of reverse pertrochanteric fractures. Here, we aimed to compare the stability provided by two implant options: long and short intramedullary nails.</p><p>We performed finite element simulations of different patterns of reverse pertrochanteric fractures with varying bone quality, and compared the short vs long nail stabilization under physiological loads. For each variable combination, the micromotions at the fracture site, bone strain, and implant stress were computed.</p><p>Mean micromotions at the fracture surface and absolute and relative fracture surface with micromotions &gt;150 µm were slightly lower with the short nail (8%, 3%, and 3%, respectively). The distal fracture extension negatively affected the stability, with increasing micromotions on the medial side. Bone strain above 1 % was not affected by the nail length. Fatigue stresses were similar for both implants, and no volume was found above the yield and ultimate stress in the tested conditions.</p><p>This simulation study shows no benefit of long nails for the investigated patterns of reverse pertrochanteric fractures, with similar micromotions at the fracture site, bone strain, and implant stress.</p></div>\",\"PeriodicalId\":49836,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1350453324001310/pdfft?md5=1fe9fee30f4491794c3f79c37c757e0b&pid=1-s2.0-S1350453324001310-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350453324001310\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324001310","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

对于治疗反向转子前骨折的首选植入物,目前还没有确切的证据。我们对不同骨质的反向转子前骨折进行了有限元模拟,并比较了长短髓内钉在生理负荷下的稳定性。对于每种变量组合,我们都计算了骨折部位的微动、骨应变和植入应力。骨折表面的平均微动以及绝对和相对骨折表面的微动>150 µm,短钉略低(分别为8%、3%和3%)。骨折远端延伸对稳定性有负面影响,内侧的微动增加。超过 1% 的骨应变不受钉子长度的影响。这项模拟研究表明,对于所研究的反向转子前骨折模式,长钉没有任何益处,骨折部位的微动、骨应变和植入应力都相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Long vs short intramedullary nails for reverse pertrochanteric fractures: A biomechanical study

There is currently no definitive evidence for the implant of choice for the treatment of reverse pertrochanteric fractures. Here, we aimed to compare the stability provided by two implant options: long and short intramedullary nails.

We performed finite element simulations of different patterns of reverse pertrochanteric fractures with varying bone quality, and compared the short vs long nail stabilization under physiological loads. For each variable combination, the micromotions at the fracture site, bone strain, and implant stress were computed.

Mean micromotions at the fracture surface and absolute and relative fracture surface with micromotions >150 µm were slightly lower with the short nail (8%, 3%, and 3%, respectively). The distal fracture extension negatively affected the stability, with increasing micromotions on the medial side. Bone strain above 1 % was not affected by the nail length. Fatigue stresses were similar for both implants, and no volume was found above the yield and ultimate stress in the tested conditions.

This simulation study shows no benefit of long nails for the investigated patterns of reverse pertrochanteric fractures, with similar micromotions at the fracture site, bone strain, and implant stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Engineering & Physics
Medical Engineering & Physics 工程技术-工程:生物医学
CiteScore
4.30
自引率
4.50%
发文量
172
审稿时长
3.0 months
期刊介绍: Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.
期刊最新文献
Monitoring focused ultrasound ablation surgery (FUAS) using echo amplitudes of the therapeutic focused transducer 3D bioheat transfer mapping reveals nanomagnetic particles effectiveness in radiofrequency hyperthermia breast cancer treatment comparing to experimental study Bone ingrowth in randomly distributed porous interbody cage during lumbar spinal fusion A method of nucleus image segmentation and counting based on TC-UNet++ and distance watershed Integrated analysis of clinical indicators and mechanical properties in cancellous bone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1