Fulai Cui , Shuo Yu , Yidong Chai , Yang Qian , Yuanchun Jiang , Yezheng Liu , Xiao Liu , Jianxin Li
{"title":"用于不确定性感知在线医生推荐的贝叶斯深度推荐系统","authors":"Fulai Cui , Shuo Yu , Yidong Chai , Yang Qian , Yuanchun Jiang , Yezheng Liu , Xiao Liu , Jianxin Li","doi":"10.1016/j.im.2024.104027","DOIUrl":null,"url":null,"abstract":"<div><p>Online physician recommender systems alleviate information overload by automatically recommending the best-fit physicians to patients. In contrast to general recommendations, physicians with greater uncertainty (i.e., greater variance in patients’ feedback) may not be preferred as this could affect patients’ treatment. However, most existing recommender systems don't consider uncertainty, reducing systems’ reliability and patients’ readiness to trust. To address this concern, this study leverages Bayesian theory and develops an uncertainty-aware online physician recommender system, including a Bayesian deep collaborative filtering (BDCF) model and a novel uncertainty-aware ranking algorithm. Experiments on real-world data demonstrate the superiority of BDCF and the ranking algorithm.</p></div>","PeriodicalId":56291,"journal":{"name":"Information & Management","volume":"61 7","pages":"Article 104027"},"PeriodicalIF":8.2000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian deep recommender system for uncertainty-aware online physician recommendation\",\"authors\":\"Fulai Cui , Shuo Yu , Yidong Chai , Yang Qian , Yuanchun Jiang , Yezheng Liu , Xiao Liu , Jianxin Li\",\"doi\":\"10.1016/j.im.2024.104027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Online physician recommender systems alleviate information overload by automatically recommending the best-fit physicians to patients. In contrast to general recommendations, physicians with greater uncertainty (i.e., greater variance in patients’ feedback) may not be preferred as this could affect patients’ treatment. However, most existing recommender systems don't consider uncertainty, reducing systems’ reliability and patients’ readiness to trust. To address this concern, this study leverages Bayesian theory and develops an uncertainty-aware online physician recommender system, including a Bayesian deep collaborative filtering (BDCF) model and a novel uncertainty-aware ranking algorithm. Experiments on real-world data demonstrate the superiority of BDCF and the ranking algorithm.</p></div>\",\"PeriodicalId\":56291,\"journal\":{\"name\":\"Information & Management\",\"volume\":\"61 7\",\"pages\":\"Article 104027\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information & Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378720624001095\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information & Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378720624001095","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Bayesian deep recommender system for uncertainty-aware online physician recommendation
Online physician recommender systems alleviate information overload by automatically recommending the best-fit physicians to patients. In contrast to general recommendations, physicians with greater uncertainty (i.e., greater variance in patients’ feedback) may not be preferred as this could affect patients’ treatment. However, most existing recommender systems don't consider uncertainty, reducing systems’ reliability and patients’ readiness to trust. To address this concern, this study leverages Bayesian theory and develops an uncertainty-aware online physician recommender system, including a Bayesian deep collaborative filtering (BDCF) model and a novel uncertainty-aware ranking algorithm. Experiments on real-world data demonstrate the superiority of BDCF and the ranking algorithm.
期刊介绍:
Information & Management is a publication that caters to researchers in the field of information systems as well as managers, professionals, administrators, and senior executives involved in designing, implementing, and managing Information Systems Applications.