基于物联网和优化 knn 的智能交通系统,用于智能城市交通流量预测

Q4 Engineering Measurement Sensors Pub Date : 2024-08-23 DOI:10.1016/j.measen.2024.101297
Sunkara Teena Mrudula , Meenakshi , Mahyudin Ritonga , S. Sivakumar , Malik Jawarneh , Sammy F , T. Keerthika , Kantilal Pitambar Rane , Bhaskar Roy
{"title":"基于物联网和优化 knn 的智能交通系统,用于智能城市交通流量预测","authors":"Sunkara Teena Mrudula ,&nbsp;Meenakshi ,&nbsp;Mahyudin Ritonga ,&nbsp;S. Sivakumar ,&nbsp;Malik Jawarneh ,&nbsp;Sammy F ,&nbsp;T. Keerthika ,&nbsp;Kantilal Pitambar Rane ,&nbsp;Bhaskar Roy","doi":"10.1016/j.measen.2024.101297","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid expansion of urban areas and the increasing number of vehicles on the road have resulted in accidents, traffic congestion, economic repercussions, environmental deterioration, and excessive fuel consumption. A dependable traffic management system is necessary to anticipate and regulate urban traffic patterns. Traffic forecast aids in the prevention of traffic issues. Urban traffic predictions often utilise historical and current traffic flow data to forecast road conditions. This article presents a traffic flow prediction system that utilises the Internet of Things (IoT), machine learning, and feature selection. Internet of Things (IoT) devices located on highways or within cars gather sensor data in real-time. The input data set comprises both real-time Internet of Things (IoT) data and historical traffic statistics. The input data is stored in a centralized cloud. The data is subjected to preprocessing in order to eliminate any unwanted interference and identify any exceptional values. The accuracy and root mean square error are contingent upon the process of feature selection. Particle swarm optimization identifies and extracts crucial features from input data. The classification model is constructed using K Nearest Neighbor, Multi layer Perceptron, and Bayes network approaches. The UCI traffic data is used for conducting experiments. The dataset has 47 attributes and 2102 occurrences. The accuracy of traffic flow prediction using PSO KNN is 96 %. The PSO KNN algorithm achieved a Mean Square Error (MSE) of 0.00289 and a Root Mean Square Error (RMSE) of 0.0595.</p></div>","PeriodicalId":34311,"journal":{"name":"Measurement Sensors","volume":"35 ","pages":"Article 101297"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665917424002733/pdfft?md5=7ef87b6815aa628f78fb630e2df64177&pid=1-s2.0-S2665917424002733-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Internet of things and optimized knn based intelligent transportation system for traffic flow prediction in smart cities\",\"authors\":\"Sunkara Teena Mrudula ,&nbsp;Meenakshi ,&nbsp;Mahyudin Ritonga ,&nbsp;S. Sivakumar ,&nbsp;Malik Jawarneh ,&nbsp;Sammy F ,&nbsp;T. Keerthika ,&nbsp;Kantilal Pitambar Rane ,&nbsp;Bhaskar Roy\",\"doi\":\"10.1016/j.measen.2024.101297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rapid expansion of urban areas and the increasing number of vehicles on the road have resulted in accidents, traffic congestion, economic repercussions, environmental deterioration, and excessive fuel consumption. A dependable traffic management system is necessary to anticipate and regulate urban traffic patterns. Traffic forecast aids in the prevention of traffic issues. Urban traffic predictions often utilise historical and current traffic flow data to forecast road conditions. This article presents a traffic flow prediction system that utilises the Internet of Things (IoT), machine learning, and feature selection. Internet of Things (IoT) devices located on highways or within cars gather sensor data in real-time. The input data set comprises both real-time Internet of Things (IoT) data and historical traffic statistics. The input data is stored in a centralized cloud. The data is subjected to preprocessing in order to eliminate any unwanted interference and identify any exceptional values. The accuracy and root mean square error are contingent upon the process of feature selection. Particle swarm optimization identifies and extracts crucial features from input data. The classification model is constructed using K Nearest Neighbor, Multi layer Perceptron, and Bayes network approaches. The UCI traffic data is used for conducting experiments. The dataset has 47 attributes and 2102 occurrences. The accuracy of traffic flow prediction using PSO KNN is 96 %. The PSO KNN algorithm achieved a Mean Square Error (MSE) of 0.00289 and a Root Mean Square Error (RMSE) of 0.0595.</p></div>\",\"PeriodicalId\":34311,\"journal\":{\"name\":\"Measurement Sensors\",\"volume\":\"35 \",\"pages\":\"Article 101297\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665917424002733/pdfft?md5=7ef87b6815aa628f78fb630e2df64177&pid=1-s2.0-S2665917424002733-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665917424002733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Sensors","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665917424002733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

城市地区的迅速扩张和道路上车辆数量的不断增加导致了交通事故、交通拥堵、经济影响、环境恶化和燃料消耗过多。一个可靠的交通管理系统对预测和调节城市交通模式十分必要。交通预测有助于预防交通问题。城市交通预测通常利用历史和当前交通流量数据来预测道路状况。本文介绍了一种利用物联网(IoT)、机器学习和特征选择的交通流量预测系统。位于高速公路上或汽车内的物联网(IoT)设备实时收集传感器数据。输入数据集包括实时物联网数据和历史交通统计数据。输入数据存储在中央云中。数据经过预处理,以消除任何不必要的干扰并识别任何异常值。准确度和均方根误差取决于特征选择过程。粒子群优化能从输入数据中识别并提取关键特征。使用 K 最近邻、多层感知器和贝叶斯网络方法构建分类模型。实验使用的是 UCI 流量数据。该数据集有 47 个属性和 2102 次出现。使用 PSO KNN 预测交通流量的准确率为 96%。PSO KNN 算法的均方误差 (MSE) 为 0.00289,均方根误差 (RMSE) 为 0.0595。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Internet of things and optimized knn based intelligent transportation system for traffic flow prediction in smart cities

The rapid expansion of urban areas and the increasing number of vehicles on the road have resulted in accidents, traffic congestion, economic repercussions, environmental deterioration, and excessive fuel consumption. A dependable traffic management system is necessary to anticipate and regulate urban traffic patterns. Traffic forecast aids in the prevention of traffic issues. Urban traffic predictions often utilise historical and current traffic flow data to forecast road conditions. This article presents a traffic flow prediction system that utilises the Internet of Things (IoT), machine learning, and feature selection. Internet of Things (IoT) devices located on highways or within cars gather sensor data in real-time. The input data set comprises both real-time Internet of Things (IoT) data and historical traffic statistics. The input data is stored in a centralized cloud. The data is subjected to preprocessing in order to eliminate any unwanted interference and identify any exceptional values. The accuracy and root mean square error are contingent upon the process of feature selection. Particle swarm optimization identifies and extracts crucial features from input data. The classification model is constructed using K Nearest Neighbor, Multi layer Perceptron, and Bayes network approaches. The UCI traffic data is used for conducting experiments. The dataset has 47 attributes and 2102 occurrences. The accuracy of traffic flow prediction using PSO KNN is 96 %. The PSO KNN algorithm achieved a Mean Square Error (MSE) of 0.00289 and a Root Mean Square Error (RMSE) of 0.0595.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement Sensors
Measurement Sensors Engineering-Industrial and Manufacturing Engineering
CiteScore
3.10
自引率
0.00%
发文量
184
审稿时长
56 days
期刊最新文献
Augmented and virtual reality based segmentation algorithm for human pose detection in wearable cameras Exploring EEG-Based biomarkers for improved early Alzheimer's disease detection: A feature-based approach utilizing machine learning Deep learning model for smart wearables device to detect human health conduction Review and analysis on numerical simulation and compact modeling of InGaZno thin-film transistor for display SENSOR applications Artificial intelligence and IoT driven system architecture for municipality waste management in smart cities: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1