{"title":"平行鳍通道中的电流体力学特性和离子风散热器的强化传热性能","authors":"","doi":"10.1016/j.tsep.2024.102828","DOIUrl":null,"url":null,"abstract":"<div><p>High heat flux density may lead to a decline in the performance of highly integrated electronic components, which presents a major challenge to thermal management strategies. This work developed ionic wind heat sinks with parallel-fin channels for cooling high-power chips. The study examined the effects of intake air velocity, number of electrodes, and discharge spacing on the distribution of ionic wind flow and the improved heat transfer performance of the ionic wind heat sink. The findings suggest that the ionic wind heat sink with wire electrodes perpendicular to the fin channels can withstand higher operating voltages and generate more reliable corona discharges. The improved heat transfer capabilities are achieved with reduced inlet air velocity. The heat transfer enhancement factor (HTEF) of the ionic wind heat sink decreases as the discharge spacing increases, leading to a reduction in the peak value of the body force. The heat transfer capacity declines as the number of wire electrodes increases, because marginal effects lessen disruption to the thermal boundary layer. An effective airflow is achieved when wire electrodes are positioned upstream of the heat sink and run parallel to the fins, ensuring a steady and efficient cooling process. The design effectively disrupts the thermal boundary layer, reducing momentum loss in the flow and increasing the HTEF value by 21.2%. This improvement significantly enhances the heat dissipation capacity. The structurally optimized heat sink demonstrates excellent overall performance and is a viable option for improving heat dissipation in electronic devices.</p></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrohydrodynamic characteristics in parallel-fin channels and enhanced heat transfer performance of an ionic wind heat sink\",\"authors\":\"\",\"doi\":\"10.1016/j.tsep.2024.102828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High heat flux density may lead to a decline in the performance of highly integrated electronic components, which presents a major challenge to thermal management strategies. This work developed ionic wind heat sinks with parallel-fin channels for cooling high-power chips. The study examined the effects of intake air velocity, number of electrodes, and discharge spacing on the distribution of ionic wind flow and the improved heat transfer performance of the ionic wind heat sink. The findings suggest that the ionic wind heat sink with wire electrodes perpendicular to the fin channels can withstand higher operating voltages and generate more reliable corona discharges. The improved heat transfer capabilities are achieved with reduced inlet air velocity. The heat transfer enhancement factor (HTEF) of the ionic wind heat sink decreases as the discharge spacing increases, leading to a reduction in the peak value of the body force. The heat transfer capacity declines as the number of wire electrodes increases, because marginal effects lessen disruption to the thermal boundary layer. An effective airflow is achieved when wire electrodes are positioned upstream of the heat sink and run parallel to the fins, ensuring a steady and efficient cooling process. The design effectively disrupts the thermal boundary layer, reducing momentum loss in the flow and increasing the HTEF value by 21.2%. This improvement significantly enhances the heat dissipation capacity. The structurally optimized heat sink demonstrates excellent overall performance and is a viable option for improving heat dissipation in electronic devices.</p></div>\",\"PeriodicalId\":23062,\"journal\":{\"name\":\"Thermal Science and Engineering Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Science and Engineering Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451904924004463\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904924004463","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Electrohydrodynamic characteristics in parallel-fin channels and enhanced heat transfer performance of an ionic wind heat sink
High heat flux density may lead to a decline in the performance of highly integrated electronic components, which presents a major challenge to thermal management strategies. This work developed ionic wind heat sinks with parallel-fin channels for cooling high-power chips. The study examined the effects of intake air velocity, number of electrodes, and discharge spacing on the distribution of ionic wind flow and the improved heat transfer performance of the ionic wind heat sink. The findings suggest that the ionic wind heat sink with wire electrodes perpendicular to the fin channels can withstand higher operating voltages and generate more reliable corona discharges. The improved heat transfer capabilities are achieved with reduced inlet air velocity. The heat transfer enhancement factor (HTEF) of the ionic wind heat sink decreases as the discharge spacing increases, leading to a reduction in the peak value of the body force. The heat transfer capacity declines as the number of wire electrodes increases, because marginal effects lessen disruption to the thermal boundary layer. An effective airflow is achieved when wire electrodes are positioned upstream of the heat sink and run parallel to the fins, ensuring a steady and efficient cooling process. The design effectively disrupts the thermal boundary layer, reducing momentum loss in the flow and increasing the HTEF value by 21.2%. This improvement significantly enhances the heat dissipation capacity. The structurally optimized heat sink demonstrates excellent overall performance and is a viable option for improving heat dissipation in electronic devices.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.