ARGV:利用增强现实技术探索三维基因组结构。

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS BMC Bioinformatics Pub Date : 2024-08-27 DOI:10.1186/s12859-024-05882-8
Chrisostomos Drogaris, Yanlin Zhang, Eric Zhang, Elena Nazarova, Roman Sarrazin-Gendron, Sélik Wilhelm-Landry, Yan Cyr, Jacek Majewski, Mathieu Blanchette, Jérôme Waldispühl
{"title":"ARGV:利用增强现实技术探索三维基因组结构。","authors":"Chrisostomos Drogaris, Yanlin Zhang, Eric Zhang, Elena Nazarova, Roman Sarrazin-Gendron, Sélik Wilhelm-Landry, Yan Cyr, Jacek Majewski, Mathieu Blanchette, Jérôme Waldispühl","doi":"10.1186/s12859-024-05882-8","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past two decades, scientists have increasingly realized the importance of the three-dimensional (3D) genome organization in regulating cellular activity. Hi-C and related experiments yield 2D contact matrices that can be used to infer 3D models of chromosome structure. Visualizing and analyzing genomes in 3D space remains challenging. Here, we present ARGV, an augmented reality 3D Genome Viewer. ARGV contains more than 350 pre-computed and annotated genome structures inferred from Hi-C and imaging data. It offers interactive and collaborative visualization of genomes in 3D space, using standard mobile phones or tablets. A user study comparing ARGV to existing tools demonstrates its benefits.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348660/pdf/","citationCount":"0","resultStr":"{\"title\":\"ARGV: 3D genome structure exploration using augmented reality.\",\"authors\":\"Chrisostomos Drogaris, Yanlin Zhang, Eric Zhang, Elena Nazarova, Roman Sarrazin-Gendron, Sélik Wilhelm-Landry, Yan Cyr, Jacek Majewski, Mathieu Blanchette, Jérôme Waldispühl\",\"doi\":\"10.1186/s12859-024-05882-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past two decades, scientists have increasingly realized the importance of the three-dimensional (3D) genome organization in regulating cellular activity. Hi-C and related experiments yield 2D contact matrices that can be used to infer 3D models of chromosome structure. Visualizing and analyzing genomes in 3D space remains challenging. Here, we present ARGV, an augmented reality 3D Genome Viewer. ARGV contains more than 350 pre-computed and annotated genome structures inferred from Hi-C and imaging data. It offers interactive and collaborative visualization of genomes in 3D space, using standard mobile phones or tablets. A user study comparing ARGV to existing tools demonstrates its benefits.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348660/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-024-05882-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05882-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在过去的二十年里,科学家们越来越意识到三维(3D)基因组组织在调节细胞活动方面的重要性。Hi-C 和相关实验产生的二维接触矩阵可用于推断染色体结构的三维模型。在三维空间中可视化和分析基因组仍然具有挑战性。在此,我们介绍增强现实三维基因组浏览器 ARGV。ARGV 包含 350 多个根据 Hi-C 和成像数据推断的预计算和注释基因组结构。它可以使用标准手机或平板电脑在三维空间中对基因组进行交互式协作可视化。一项用户研究将 ARGV 与现有工具进行了比较,证明了 ARGV 的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ARGV: 3D genome structure exploration using augmented reality.

Over the past two decades, scientists have increasingly realized the importance of the three-dimensional (3D) genome organization in regulating cellular activity. Hi-C and related experiments yield 2D contact matrices that can be used to infer 3D models of chromosome structure. Visualizing and analyzing genomes in 3D space remains challenging. Here, we present ARGV, an augmented reality 3D Genome Viewer. ARGV contains more than 350 pre-computed and annotated genome structures inferred from Hi-C and imaging data. It offers interactive and collaborative visualization of genomes in 3D space, using standard mobile phones or tablets. A user study comparing ARGV to existing tools demonstrates its benefits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Rare copy number variant analysis in case-control studies using snp array data: a scalable and automated data analysis pipeline. Mining contextually meaningful subgraphs from a vertex-attributed graph. Robust double machine learning model with application to omics data. A mapping-free natural language processing-based technique for sequence search in nanopore long-reads. Closha 2.0: a bio-workflow design system for massive genome data analysis on high performance cluster infrastructure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1