Chrisostomos Drogaris, Yanlin Zhang, Eric Zhang, Elena Nazarova, Roman Sarrazin-Gendron, Sélik Wilhelm-Landry, Yan Cyr, Jacek Majewski, Mathieu Blanchette, Jérôme Waldispühl
{"title":"ARGV:利用增强现实技术探索三维基因组结构。","authors":"Chrisostomos Drogaris, Yanlin Zhang, Eric Zhang, Elena Nazarova, Roman Sarrazin-Gendron, Sélik Wilhelm-Landry, Yan Cyr, Jacek Majewski, Mathieu Blanchette, Jérôme Waldispühl","doi":"10.1186/s12859-024-05882-8","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past two decades, scientists have increasingly realized the importance of the three-dimensional (3D) genome organization in regulating cellular activity. Hi-C and related experiments yield 2D contact matrices that can be used to infer 3D models of chromosome structure. Visualizing and analyzing genomes in 3D space remains challenging. Here, we present ARGV, an augmented reality 3D Genome Viewer. ARGV contains more than 350 pre-computed and annotated genome structures inferred from Hi-C and imaging data. It offers interactive and collaborative visualization of genomes in 3D space, using standard mobile phones or tablets. A user study comparing ARGV to existing tools demonstrates its benefits.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348660/pdf/","citationCount":"0","resultStr":"{\"title\":\"ARGV: 3D genome structure exploration using augmented reality.\",\"authors\":\"Chrisostomos Drogaris, Yanlin Zhang, Eric Zhang, Elena Nazarova, Roman Sarrazin-Gendron, Sélik Wilhelm-Landry, Yan Cyr, Jacek Majewski, Mathieu Blanchette, Jérôme Waldispühl\",\"doi\":\"10.1186/s12859-024-05882-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past two decades, scientists have increasingly realized the importance of the three-dimensional (3D) genome organization in regulating cellular activity. Hi-C and related experiments yield 2D contact matrices that can be used to infer 3D models of chromosome structure. Visualizing and analyzing genomes in 3D space remains challenging. Here, we present ARGV, an augmented reality 3D Genome Viewer. ARGV contains more than 350 pre-computed and annotated genome structures inferred from Hi-C and imaging data. It offers interactive and collaborative visualization of genomes in 3D space, using standard mobile phones or tablets. A user study comparing ARGV to existing tools demonstrates its benefits.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348660/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-024-05882-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05882-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
ARGV: 3D genome structure exploration using augmented reality.
Over the past two decades, scientists have increasingly realized the importance of the three-dimensional (3D) genome organization in regulating cellular activity. Hi-C and related experiments yield 2D contact matrices that can be used to infer 3D models of chromosome structure. Visualizing and analyzing genomes in 3D space remains challenging. Here, we present ARGV, an augmented reality 3D Genome Viewer. ARGV contains more than 350 pre-computed and annotated genome structures inferred from Hi-C and imaging data. It offers interactive and collaborative visualization of genomes in 3D space, using standard mobile phones or tablets. A user study comparing ARGV to existing tools demonstrates its benefits.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.