构建碘掺杂氮化碳作为用于抗菌和水处理的无金属纳米酶。

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2024-08-21 DOI:10.3390/nano14161369
Xinru Cai, Tongtong Xie, Linshan Luo, Xiting Li
{"title":"构建碘掺杂氮化碳作为用于抗菌和水处理的无金属纳米酶。","authors":"Xinru Cai, Tongtong Xie, Linshan Luo, Xiting Li","doi":"10.3390/nano14161369","DOIUrl":null,"url":null,"abstract":"<p><p>Metal-free photocatalysis that produces reactive oxygen species (ROS) shows significant promising applications for environmental remediation. Herein, we constructed iodine-doped carbon nitride (I-CN) for applications in the photocatalytic inactivation of bacteria and the heterogeneous Fenton reaction. Our findings revealed that I-CN demonstrates superior photocatalytic activity compared to pure CN, due to enhanced light adsorption and a narrowed band gap. Antibacterial tests confirmed that I-CN exhibits exceptional antibacterial activity against both <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>. The results showed that I-CN effectively generates superoxide radicals and hydroxyl radicals under light irradiation, resulting in enhanced antibacterial activity. In addition, I-CN can also be applied for a heterogeneous photo-Fenton-like reaction, achieving a high performance for the degradation of sulfamethoxazole (SMX), a typical antibiotic, via the photocatalytic activation of peroxymonosulfate (PMS). These results shed new light on the fabrication of metal-free nanozymes and their applications for disinfection and water decontamination.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357014/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Construction of Iodine-Doped Carbon Nitride as a Metal-Free Nanozyme for Antibacterial and Water Treatment.\",\"authors\":\"Xinru Cai, Tongtong Xie, Linshan Luo, Xiting Li\",\"doi\":\"10.3390/nano14161369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metal-free photocatalysis that produces reactive oxygen species (ROS) shows significant promising applications for environmental remediation. Herein, we constructed iodine-doped carbon nitride (I-CN) for applications in the photocatalytic inactivation of bacteria and the heterogeneous Fenton reaction. Our findings revealed that I-CN demonstrates superior photocatalytic activity compared to pure CN, due to enhanced light adsorption and a narrowed band gap. Antibacterial tests confirmed that I-CN exhibits exceptional antibacterial activity against both <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>. The results showed that I-CN effectively generates superoxide radicals and hydroxyl radicals under light irradiation, resulting in enhanced antibacterial activity. In addition, I-CN can also be applied for a heterogeneous photo-Fenton-like reaction, achieving a high performance for the degradation of sulfamethoxazole (SMX), a typical antibiotic, via the photocatalytic activation of peroxymonosulfate (PMS). These results shed new light on the fabrication of metal-free nanozymes and their applications for disinfection and water decontamination.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357014/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14161369\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14161369","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

产生活性氧(ROS)的无金属光催化技术在环境修复方面有着广阔的应用前景。在此,我们构建了掺碘氮化碳(I-CN),用于光催化灭活细菌和异相芬顿反应。我们的研究结果表明,与纯氮化碳相比,I-CN 具有更高的光催化活性,这是由于 I-CN 增强了对光的吸附并缩小了带隙。抗菌测试证实,I-CN 对大肠杆菌和金黄色葡萄球菌都具有卓越的抗菌活性。结果表明,在光照射下,I-氯化萘能有效产生超氧自由基和羟自由基,从而增强抗菌活性。此外,I-CN 还可用于异相光-芬顿反应,通过光催化活化过氧单硫酸盐(PMS),实现对典型抗生素磺胺甲噁唑(SMX)的高效降解。这些成果为无金属纳米酶的制造及其在消毒和水净化方面的应用提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Construction of Iodine-Doped Carbon Nitride as a Metal-Free Nanozyme for Antibacterial and Water Treatment.

Metal-free photocatalysis that produces reactive oxygen species (ROS) shows significant promising applications for environmental remediation. Herein, we constructed iodine-doped carbon nitride (I-CN) for applications in the photocatalytic inactivation of bacteria and the heterogeneous Fenton reaction. Our findings revealed that I-CN demonstrates superior photocatalytic activity compared to pure CN, due to enhanced light adsorption and a narrowed band gap. Antibacterial tests confirmed that I-CN exhibits exceptional antibacterial activity against both Escherichia coli and Staphylococcus aureus. The results showed that I-CN effectively generates superoxide radicals and hydroxyl radicals under light irradiation, resulting in enhanced antibacterial activity. In addition, I-CN can also be applied for a heterogeneous photo-Fenton-like reaction, achieving a high performance for the degradation of sulfamethoxazole (SMX), a typical antibiotic, via the photocatalytic activation of peroxymonosulfate (PMS). These results shed new light on the fabrication of metal-free nanozymes and their applications for disinfection and water decontamination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
Enhancing Charge Trapping Performance of Hafnia Thin Films Using Sequential Plasma Atomic Layer Deposition. Flexible All-Carbon Nanoarchitecture Built from In Situ Formation of Nanoporous Graphene Within "Skeletal-Capillary" Carbon Nanotube Networks for Supercapacitors. Ligands of Nanoparticles and Their Influence on the Morphologies of Nanoparticle-Based Films. Phonon Drag Contribution to Thermopower for a Heated Metal Nanoisland on a Semiconductor Substrate. On the Synthesis of Graphene Oxide/Titanium Dioxide (GO/TiO2) Nanorods and Their Application as Saturable Absorbers for Passive Q-Switched Fiber Lasers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1