Qingjie Xu, Haining Ji, Yang Ren, Yangyong Ou, Bin Liu, Yi Wang, Yongxing Chen, Peng Long, Cong Deng, Jingting Wang
{"title":"具有高发射率可调性和保护层的基于 VO2 的航天器智能散热器。","authors":"Qingjie Xu, Haining Ji, Yang Ren, Yangyong Ou, Bin Liu, Yi Wang, Yongxing Chen, Peng Long, Cong Deng, Jingting Wang","doi":"10.3390/nano14161348","DOIUrl":null,"url":null,"abstract":"<p><p>In the extreme space environment, spacecraft endure dramatic temperature variations that can impair their functionality. A VO<sub>2</sub>-based smart radiator device (SRD) offers an effective solution by adaptively adjusting its radiative properties. However, current research on VO<sub>2</sub>-based thermochromic films mainly focuses on optimizing the emissivity tunability (Δ<i>ε</i>) of single-cycle sandwich structures. Although multi-cycle structures have shown increased Δ<i>ε</i> compared to single-cycle sandwich structures, there have been few systematic studies to find the optimal cycle structure. This paper theoretically discusses the influence of material properties and cyclic structure on SRD performance using Finite-Difference Time-Domain (FDTD) software, which is a rigorous and powerful tool for modeling nano-scale optical devices. An optimal structural model with maximum emissivity tunability is proposed. The BaF<sub>2</sub> obtained through optimization is used as the dielectric material to further optimize the cyclic resonator. The results indicate that the tunability of emissivity can reach as high as 0.7917 when the BaF<sub>2</sub>/VO<sub>2</sub> structure is arranged in three periods. Furthermore, to ensure a longer lifespan for SRD under harsh space conditions, the effects of HfO<sub>2</sub> and TiO<sub>2</sub> protective layers on the optical performance of composite films are investigated. The results show that when TiO<sub>2</sub> is used as the protective layer with a thickness of 0.1 µm, the maximum emissivity tunability reaches 0.7932. Finally, electric field analysis is conducted to prove that the physical mechanism of the smart radiator device is the combination of stacked Fabry-Perot resonance and multiple solar reflections. This work not only validates the effectiveness of the proposed structure in enhancing spacecraft thermal control performance but also provides theoretical guidance for the design and optimization of SRDs for space applications.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357278/pdf/","citationCount":"0","resultStr":"{\"title\":\"VO<sub>2</sub>-Based Spacecraft Smart Radiator with High Emissivity Tunability and Protective Layer.\",\"authors\":\"Qingjie Xu, Haining Ji, Yang Ren, Yangyong Ou, Bin Liu, Yi Wang, Yongxing Chen, Peng Long, Cong Deng, Jingting Wang\",\"doi\":\"10.3390/nano14161348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the extreme space environment, spacecraft endure dramatic temperature variations that can impair their functionality. A VO<sub>2</sub>-based smart radiator device (SRD) offers an effective solution by adaptively adjusting its radiative properties. However, current research on VO<sub>2</sub>-based thermochromic films mainly focuses on optimizing the emissivity tunability (Δ<i>ε</i>) of single-cycle sandwich structures. Although multi-cycle structures have shown increased Δ<i>ε</i> compared to single-cycle sandwich structures, there have been few systematic studies to find the optimal cycle structure. This paper theoretically discusses the influence of material properties and cyclic structure on SRD performance using Finite-Difference Time-Domain (FDTD) software, which is a rigorous and powerful tool for modeling nano-scale optical devices. An optimal structural model with maximum emissivity tunability is proposed. The BaF<sub>2</sub> obtained through optimization is used as the dielectric material to further optimize the cyclic resonator. The results indicate that the tunability of emissivity can reach as high as 0.7917 when the BaF<sub>2</sub>/VO<sub>2</sub> structure is arranged in three periods. Furthermore, to ensure a longer lifespan for SRD under harsh space conditions, the effects of HfO<sub>2</sub> and TiO<sub>2</sub> protective layers on the optical performance of composite films are investigated. The results show that when TiO<sub>2</sub> is used as the protective layer with a thickness of 0.1 µm, the maximum emissivity tunability reaches 0.7932. Finally, electric field analysis is conducted to prove that the physical mechanism of the smart radiator device is the combination of stacked Fabry-Perot resonance and multiple solar reflections. This work not only validates the effectiveness of the proposed structure in enhancing spacecraft thermal control performance but also provides theoretical guidance for the design and optimization of SRDs for space applications.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357278/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano14161348\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14161348","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
VO2-Based Spacecraft Smart Radiator with High Emissivity Tunability and Protective Layer.
In the extreme space environment, spacecraft endure dramatic temperature variations that can impair their functionality. A VO2-based smart radiator device (SRD) offers an effective solution by adaptively adjusting its radiative properties. However, current research on VO2-based thermochromic films mainly focuses on optimizing the emissivity tunability (Δε) of single-cycle sandwich structures. Although multi-cycle structures have shown increased Δε compared to single-cycle sandwich structures, there have been few systematic studies to find the optimal cycle structure. This paper theoretically discusses the influence of material properties and cyclic structure on SRD performance using Finite-Difference Time-Domain (FDTD) software, which is a rigorous and powerful tool for modeling nano-scale optical devices. An optimal structural model with maximum emissivity tunability is proposed. The BaF2 obtained through optimization is used as the dielectric material to further optimize the cyclic resonator. The results indicate that the tunability of emissivity can reach as high as 0.7917 when the BaF2/VO2 structure is arranged in three periods. Furthermore, to ensure a longer lifespan for SRD under harsh space conditions, the effects of HfO2 and TiO2 protective layers on the optical performance of composite films are investigated. The results show that when TiO2 is used as the protective layer with a thickness of 0.1 µm, the maximum emissivity tunability reaches 0.7932. Finally, electric field analysis is conducted to prove that the physical mechanism of the smart radiator device is the combination of stacked Fabry-Perot resonance and multiple solar reflections. This work not only validates the effectiveness of the proposed structure in enhancing spacecraft thermal control performance but also provides theoretical guidance for the design and optimization of SRDs for space applications.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.