从单细胞奥米克斯数据中恢复生物分子网络动态需要三个时间点。

IF 3.5 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY NPJ Systems Biology and Applications Pub Date : 2024-08-27 DOI:10.1038/s41540-024-00424-7
Shu Wang, Muhammad Ali Al-Radhawi, Douglas A Lauffenburger, Eduardo D Sontag
{"title":"从单细胞奥米克斯数据中恢复生物分子网络动态需要三个时间点。","authors":"Shu Wang, Muhammad Ali Al-Radhawi, Douglas A Lauffenburger, Eduardo D Sontag","doi":"10.1038/s41540-024-00424-7","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell omics technologies can measure millions of cells for up to thousands of biomolecular features, enabling data-driven studies of complex biological networks. However, these high-throughput experimental techniques often cannot track individual cells over time, thus complicating the understanding of dynamics such as time trajectories of cell states. These \"dynamical phenotypes\" are key to understanding biological phenomena such as differentiation fates. We show by mathematical analysis that, in spite of high dimensionality and lack of individual cell traces, three time-points of single-cell omics data are theoretically necessary and sufficient to uniquely determine the network interaction matrix and associated dynamics. Moreover, we show through numerical simulations that an interaction matrix can be accurately determined with three or more time-points even in the presence of sampling and measurement noise typical of single-cell omics. Our results can guide the design of single-cell omics time-course experiments, and provide a tool for data-driven phase-space analysis.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350189/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recovering biomolecular network dynamics from single-cell omics data requires three time points.\",\"authors\":\"Shu Wang, Muhammad Ali Al-Radhawi, Douglas A Lauffenburger, Eduardo D Sontag\",\"doi\":\"10.1038/s41540-024-00424-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell omics technologies can measure millions of cells for up to thousands of biomolecular features, enabling data-driven studies of complex biological networks. However, these high-throughput experimental techniques often cannot track individual cells over time, thus complicating the understanding of dynamics such as time trajectories of cell states. These \\\"dynamical phenotypes\\\" are key to understanding biological phenomena such as differentiation fates. We show by mathematical analysis that, in spite of high dimensionality and lack of individual cell traces, three time-points of single-cell omics data are theoretically necessary and sufficient to uniquely determine the network interaction matrix and associated dynamics. Moreover, we show through numerical simulations that an interaction matrix can be accurately determined with three or more time-points even in the presence of sampling and measurement noise typical of single-cell omics. Our results can guide the design of single-cell omics time-course experiments, and provide a tool for data-driven phase-space analysis.</p>\",\"PeriodicalId\":19345,\"journal\":{\"name\":\"NPJ Systems Biology and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350189/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Systems Biology and Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41540-024-00424-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00424-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

单细胞组学技术可以测量数百万个细胞的数千种生物分子特征,从而对复杂的生物网络进行数据驱动研究。然而,这些高通量实验技术往往无法跟踪单个细胞的时间变化,从而使了解细胞状态的时间轨迹等动态变化变得更加复杂。这些 "动态表型 "是理解分化命运等生物现象的关键。我们通过数学分析证明,尽管维度很高且缺乏单个细胞的轨迹,但理论上单细胞全息数据的三个时间点对于唯一确定网络交互矩阵和相关动态是必要且充分的。此外,我们还通过数值模拟表明,即使存在单细胞全息数据典型的采样和测量噪声,也能通过三个或更多时间点准确确定相互作用矩阵。我们的研究结果可以指导单细胞组学时程实验的设计,并为数据驱动的相空间分析提供工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recovering biomolecular network dynamics from single-cell omics data requires three time points.

Single-cell omics technologies can measure millions of cells for up to thousands of biomolecular features, enabling data-driven studies of complex biological networks. However, these high-throughput experimental techniques often cannot track individual cells over time, thus complicating the understanding of dynamics such as time trajectories of cell states. These "dynamical phenotypes" are key to understanding biological phenomena such as differentiation fates. We show by mathematical analysis that, in spite of high dimensionality and lack of individual cell traces, three time-points of single-cell omics data are theoretically necessary and sufficient to uniquely determine the network interaction matrix and associated dynamics. Moreover, we show through numerical simulations that an interaction matrix can be accurately determined with three or more time-points even in the presence of sampling and measurement noise typical of single-cell omics. Our results can guide the design of single-cell omics time-course experiments, and provide a tool for data-driven phase-space analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NPJ Systems Biology and Applications
NPJ Systems Biology and Applications Mathematics-Applied Mathematics
CiteScore
5.80
自引率
0.00%
发文量
46
审稿时长
8 weeks
期刊介绍: npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology. We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.
期刊最新文献
Exploring heterogeneous cell population dynamics in different microenvironments by novel analytical strategy based on images. Network medicine informed multiomics integration identifies drug targets and repurposable medicines for Amyotrophic Lateral Sclerosis. Multi-bioinformatics revealed potential biomarkers and repurposed drugs for gastric adenocarcinoma-related gastric intestinal metaplasia. Multiscale, mechanistic model of Rheumatoid Arthritis to enable decision making in late stage drug development. An integrative network-based approach to identify driving gene communities in chronic obstructive pulmonary disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1