中国山东省首次报告由 Fusarium solani 引起的黄角(Xanthoceras sorbifolium Bunge)领腐病。

IF 4.4 2区 农林科学 Q1 PLANT SCIENCES Plant disease Pub Date : 2024-08-27 DOI:10.1094/PDIS-12-23-2663-PDN
Qiang Liang, Bing-Hong Zhang, Hong-Cheng Fang, Yu-Hui Dong, Xin-Yang Zhang, Zhen Wang, Ke-Qiang Yang
{"title":"中国山东省首次报告由 Fusarium solani 引起的黄角(Xanthoceras sorbifolium Bunge)领腐病。","authors":"Qiang Liang, Bing-Hong Zhang, Hong-Cheng Fang, Yu-Hui Dong, Xin-Yang Zhang, Zhen Wang, Ke-Qiang Yang","doi":"10.1094/PDIS-12-23-2663-PDN","DOIUrl":null,"url":null,"abstract":"<p><p>Yellowhorn (Xanthoceras sorbifolium) is a deciduous shrub or small tree native to China. The content of oil in kernels is 52.7% to 58.0%, of which is the source of neuroic acid (3.7-4.4%). (Liang et al. 2022). In recent years, yellowhorn, as a woody oleiferous crop, has been cultivated in northern China (Xiao et al. 2023). In late June 2019, an unknown collar rot was observed on yellowhorn in Tai'an, and Weifang City, Shandong Province, China. Infected plants had dark brown to black lesions at the base of the stem, about 10 to 15 cm from the ground, bark dehiscence and rot, resulting in wilting, withering, and death of plants. The disease incidence in the field was 35-48%. Representative symptomatic samples were collected randomly from the collar of 8 plants, and 24 samples were cut from the diseased tissue into 5 mm square pieces, surface disinfected with 75% alcohol for 30s and then with 0.1% mercury bichloride for 1min, plated onto potato dextrose agar (PDA), and incubated at 28°C in the dark for 2 to 3 days. Isolation frequency of the pathogen from symptomatic collar was 83.3%. The colonies were subcultured three times on PDA to obtained the purified colonies. The colonies appeared flocculent mycelia incubated on PDA at 28°C for 7 days. The color of the surface and the reverse colony was white and cream, respectively. The chlamydosposres were smooth with thick walled, and are formed singly. Microconidia were oval or ellipsoidal, with 0-1 septum; macroconidia end cells curved to slightly, with 3- or 5-septate, and measured 17.3 to 23.1 × 4.9 to 6.5 µm (avg. 21.3 × 5.9 μm, n = 60). The morphological characteristics fit the descriptions of Fusarium spp. (Hafizi et al. 2013; Crespo et al 2019). Genomic DNA extracted from four representative isolates (XSTA4, XSTA7, XSWF6 and XSWF8), and the internal transcribed spacer region (ITS) of ribosomal DNA, translation elongation factor 1-alpha (EF1-α), RNA polymerase I beta subunit (RPB1), and RNA polymerase II beta subunit (RPB2) genes were amplified using the primer pairs ITS1/ITS4 (White et al. 1990), EF-1/EF-2, RPB-1F/1R, and RPB2-5F2/11aR (O'Donnell et al 2010), respectively. Amplicons were sequenced and compared in GenBank using a BLAST analysis. The ITS sequences (OR672118, OR669008, OR669039, and OR669279) had 100% similarity with the sequences of F. solani (MT560378, MG561938, MN989030 and OP630608, respectively). The EF1-α sequences (OR934984, OR934985, OR934986, and OR934987) matched 100% with the sequences of F. solani (OQ511088, MW332044, MW620166 and MT379886). The RPB-1 sequences (PP896852, PP896853, PP896854, and PP896855) had 100% similarity with the sequences of F. solani (OL474057, OR916019, MT305118 and MT305118, respectively). The RPB2 sequences (PP896856, PP896857, PP896858, and PP896859) matched 100% with the sequences of F. solani (OR371884, OK880266, OP784447 and OL474055, respectively). A phylogenetic analysis based on ITS, RPB2 and EF1-α sequences placed the four obtained isolates within the same clade containing the F. solani isolates A6, 91-84-1 and UCR1780. Pathogenicity tests were carried out in late-June 2020. Fifty 120-day-old healthy seedlings were wounded with 2 mm deep at stems in the collar region of plants at 5 cm above the soil for tested. The seedlings were inoculated on the wound with 3-mm mycelial discs from a 7-day-old culture of each four representative strains of 10 repeated, respectively. Ten seedlings inoculated on the wound with sterile PDA served as control. All plants were grown in an incubator with a 28°C temperature. After 20 days, the stems which were inoculated the representative strain turned brown, with 2 - 5 cm length lesion, and the plants developed typical wilting and withering symptoms which similar to those observed in the field. The control remained asymptomatic. The pathogen was reisolated from the inoculated stems and its identity confirmed with both morphology and using molecular tools. These results indicated that the pathogens of yellowhorn collar rot is F. solani. To our knowledge, this is the first report of F. solani causing collar rot of yellowhorn in China.</p>","PeriodicalId":20063,"journal":{"name":"Plant disease","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First Report of Collar Rot in Yellowhorn (<i>Xanthoceras sorbifolium</i> Bunge) Caused by <i>Fusarium solani</i> in Shandong Province, China.\",\"authors\":\"Qiang Liang, Bing-Hong Zhang, Hong-Cheng Fang, Yu-Hui Dong, Xin-Yang Zhang, Zhen Wang, Ke-Qiang Yang\",\"doi\":\"10.1094/PDIS-12-23-2663-PDN\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Yellowhorn (Xanthoceras sorbifolium) is a deciduous shrub or small tree native to China. The content of oil in kernels is 52.7% to 58.0%, of which is the source of neuroic acid (3.7-4.4%). (Liang et al. 2022). In recent years, yellowhorn, as a woody oleiferous crop, has been cultivated in northern China (Xiao et al. 2023). In late June 2019, an unknown collar rot was observed on yellowhorn in Tai'an, and Weifang City, Shandong Province, China. Infected plants had dark brown to black lesions at the base of the stem, about 10 to 15 cm from the ground, bark dehiscence and rot, resulting in wilting, withering, and death of plants. The disease incidence in the field was 35-48%. Representative symptomatic samples were collected randomly from the collar of 8 plants, and 24 samples were cut from the diseased tissue into 5 mm square pieces, surface disinfected with 75% alcohol for 30s and then with 0.1% mercury bichloride for 1min, plated onto potato dextrose agar (PDA), and incubated at 28°C in the dark for 2 to 3 days. Isolation frequency of the pathogen from symptomatic collar was 83.3%. The colonies were subcultured three times on PDA to obtained the purified colonies. The colonies appeared flocculent mycelia incubated on PDA at 28°C for 7 days. The color of the surface and the reverse colony was white and cream, respectively. The chlamydosposres were smooth with thick walled, and are formed singly. Microconidia were oval or ellipsoidal, with 0-1 septum; macroconidia end cells curved to slightly, with 3- or 5-septate, and measured 17.3 to 23.1 × 4.9 to 6.5 µm (avg. 21.3 × 5.9 μm, n = 60). The morphological characteristics fit the descriptions of Fusarium spp. (Hafizi et al. 2013; Crespo et al 2019). Genomic DNA extracted from four representative isolates (XSTA4, XSTA7, XSWF6 and XSWF8), and the internal transcribed spacer region (ITS) of ribosomal DNA, translation elongation factor 1-alpha (EF1-α), RNA polymerase I beta subunit (RPB1), and RNA polymerase II beta subunit (RPB2) genes were amplified using the primer pairs ITS1/ITS4 (White et al. 1990), EF-1/EF-2, RPB-1F/1R, and RPB2-5F2/11aR (O'Donnell et al 2010), respectively. Amplicons were sequenced and compared in GenBank using a BLAST analysis. The ITS sequences (OR672118, OR669008, OR669039, and OR669279) had 100% similarity with the sequences of F. solani (MT560378, MG561938, MN989030 and OP630608, respectively). The EF1-α sequences (OR934984, OR934985, OR934986, and OR934987) matched 100% with the sequences of F. solani (OQ511088, MW332044, MW620166 and MT379886). The RPB-1 sequences (PP896852, PP896853, PP896854, and PP896855) had 100% similarity with the sequences of F. solani (OL474057, OR916019, MT305118 and MT305118, respectively). The RPB2 sequences (PP896856, PP896857, PP896858, and PP896859) matched 100% with the sequences of F. solani (OR371884, OK880266, OP784447 and OL474055, respectively). A phylogenetic analysis based on ITS, RPB2 and EF1-α sequences placed the four obtained isolates within the same clade containing the F. solani isolates A6, 91-84-1 and UCR1780. Pathogenicity tests were carried out in late-June 2020. Fifty 120-day-old healthy seedlings were wounded with 2 mm deep at stems in the collar region of plants at 5 cm above the soil for tested. The seedlings were inoculated on the wound with 3-mm mycelial discs from a 7-day-old culture of each four representative strains of 10 repeated, respectively. Ten seedlings inoculated on the wound with sterile PDA served as control. All plants were grown in an incubator with a 28°C temperature. After 20 days, the stems which were inoculated the representative strain turned brown, with 2 - 5 cm length lesion, and the plants developed typical wilting and withering symptoms which similar to those observed in the field. The control remained asymptomatic. The pathogen was reisolated from the inoculated stems and its identity confirmed with both morphology and using molecular tools. These results indicated that the pathogens of yellowhorn collar rot is F. solani. To our knowledge, this is the first report of F. solani causing collar rot of yellowhorn in China.</p>\",\"PeriodicalId\":20063,\"journal\":{\"name\":\"Plant disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant disease\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1094/PDIS-12-23-2663-PDN\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant disease","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PDIS-12-23-2663-PDN","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

黄角树(Xanthoceras sorbifolium)是一种落叶灌木或小乔木,原产于中国。果仁含油量为 52.7% 至 58.0%,其中神经酸(3.7%-4.4%)是其来源。(Liang 等人,2022 年)。近年来,黄角树作为木本油料作物,在中国北方也有种植(肖等,2023)。2019 年 6 月下旬,在中国山东省泰安市和潍坊市的黄角地上观察到一种未知的领腐病。被感染植株的茎基部距地面约 10-15 厘米处出现黑褐色至黑色病斑,树皮开裂、腐烂,导致植株萎蔫、枯死。田间发病率为 35-48%。从 8 株植株的衣领处随机采集有代表性的症状样本,并从病组织上切取 24 个 5 毫米见方的样本,用 75% 的酒精表面消毒 30 秒,再用 0.1% 的二氯化汞表面消毒 1 分钟,然后将样本接种到马铃薯葡萄糖琼脂(PDA)上,在 28°C 黑暗条件下培养 2 至 3 天。从有症状的衣领中分离病原体的频率为 83.3%。将菌落在 PDA 上再培养三次,获得纯化菌落。菌落出现絮状菌丝,在 28°C 的 PDA 上培养 7 天。菌落表面和反面的颜色分别为白色和乳白色。衣壳菌丝光滑,壁厚,单个形成。微菌丝呈卵圆形或椭圆形,有 0-1 个隔膜;大菌丝端胞弯曲至稍弯曲,有 3 或 5 个隔膜,尺寸为 17.3 至 23.1 × 4.9 至 6.5 µm(平均 21.3 × 5.9 μm,n = 60)。形态特征符合镰刀菌属的描述(Hafizi 等人,2013 年;Crespo 等人,2019 年)。从四个代表性分离株(XSTA4、XSTA7、XSWF6 和 XSWF8)中提取基因组 DNA,并使用引物对 ITS1/ITS4(White et al.1990)、EF-1/EF-2、RPB-1F/1R 和 RPB2-5F2/11aR 引物对(O'Donnell et al.利用 BLAST 分析对扩增子进行测序并在 GenBank 中进行比较。ITS序列(OR672118、OR669008、OR669039和OR669279)与F. solani的序列(分别为MT560378、MG561938、MN989030和OP630608)具有100%的相似性。EF1-α 序列(OR934984、OR934985、OR934986 和 OR934987)与 F. solani 的序列(OQ511088、MW332044、MW620166 和 MT379886)的相似度为 100%。RPB-1 序列(PP896852、PP896853、PP896854 和 PP896855)与 F. solani 的序列(分别为 OL474057、OR916019、MT305118 和 MT305118)具有 100%的相似性。RPB2 序列(PP896856、PP896857、PP896858 和 PP896859)与 F. solani 的序列(分别为 OR371884、OK880266、OP784447 和 OL474055)的相似度为 100%。根据 ITS、RPB2 和 EF1-α 序列进行的系统发育分析将获得的四个分离物归入包含 F. solani 分离物 A6、91-84-1 和 UCR1780 的同一支系。致病性试验于 2020 年 6 月下旬进行。将 50 株 120 天大的健康幼苗在离土壤 5 厘米高的植株领部茎干处以 2 毫米深的伤口进行试验。在幼苗伤口处接种 3 毫米的菌丝盘,菌丝盘来自培养 7 天的 4 个代表菌株,每种菌株重复 10 次。用无菌 PDA 在伤口上接种的 10 株幼苗作为对照。所有植物均在 28°C 的培养箱中生长。20 天后,接种了代表菌株的茎变为褐色,出现 2 - 5 厘米长的病斑,植株出现典型的萎蔫和枯萎症状,与田间观察到的症状相似。对照组仍无症状。从接种的茎秆中重新分离出病原体,并通过形态学和分子工具确认了病原体的身份。这些结果表明,黄角领腐病的病原体是 F. solani。据我们所知,这是中国首次报道 F. solani 引起黄角领腐病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
First Report of Collar Rot in Yellowhorn (Xanthoceras sorbifolium Bunge) Caused by Fusarium solani in Shandong Province, China.

Yellowhorn (Xanthoceras sorbifolium) is a deciduous shrub or small tree native to China. The content of oil in kernels is 52.7% to 58.0%, of which is the source of neuroic acid (3.7-4.4%). (Liang et al. 2022). In recent years, yellowhorn, as a woody oleiferous crop, has been cultivated in northern China (Xiao et al. 2023). In late June 2019, an unknown collar rot was observed on yellowhorn in Tai'an, and Weifang City, Shandong Province, China. Infected plants had dark brown to black lesions at the base of the stem, about 10 to 15 cm from the ground, bark dehiscence and rot, resulting in wilting, withering, and death of plants. The disease incidence in the field was 35-48%. Representative symptomatic samples were collected randomly from the collar of 8 plants, and 24 samples were cut from the diseased tissue into 5 mm square pieces, surface disinfected with 75% alcohol for 30s and then with 0.1% mercury bichloride for 1min, plated onto potato dextrose agar (PDA), and incubated at 28°C in the dark for 2 to 3 days. Isolation frequency of the pathogen from symptomatic collar was 83.3%. The colonies were subcultured three times on PDA to obtained the purified colonies. The colonies appeared flocculent mycelia incubated on PDA at 28°C for 7 days. The color of the surface and the reverse colony was white and cream, respectively. The chlamydosposres were smooth with thick walled, and are formed singly. Microconidia were oval or ellipsoidal, with 0-1 septum; macroconidia end cells curved to slightly, with 3- or 5-septate, and measured 17.3 to 23.1 × 4.9 to 6.5 µm (avg. 21.3 × 5.9 μm, n = 60). The morphological characteristics fit the descriptions of Fusarium spp. (Hafizi et al. 2013; Crespo et al 2019). Genomic DNA extracted from four representative isolates (XSTA4, XSTA7, XSWF6 and XSWF8), and the internal transcribed spacer region (ITS) of ribosomal DNA, translation elongation factor 1-alpha (EF1-α), RNA polymerase I beta subunit (RPB1), and RNA polymerase II beta subunit (RPB2) genes were amplified using the primer pairs ITS1/ITS4 (White et al. 1990), EF-1/EF-2, RPB-1F/1R, and RPB2-5F2/11aR (O'Donnell et al 2010), respectively. Amplicons were sequenced and compared in GenBank using a BLAST analysis. The ITS sequences (OR672118, OR669008, OR669039, and OR669279) had 100% similarity with the sequences of F. solani (MT560378, MG561938, MN989030 and OP630608, respectively). The EF1-α sequences (OR934984, OR934985, OR934986, and OR934987) matched 100% with the sequences of F. solani (OQ511088, MW332044, MW620166 and MT379886). The RPB-1 sequences (PP896852, PP896853, PP896854, and PP896855) had 100% similarity with the sequences of F. solani (OL474057, OR916019, MT305118 and MT305118, respectively). The RPB2 sequences (PP896856, PP896857, PP896858, and PP896859) matched 100% with the sequences of F. solani (OR371884, OK880266, OP784447 and OL474055, respectively). A phylogenetic analysis based on ITS, RPB2 and EF1-α sequences placed the four obtained isolates within the same clade containing the F. solani isolates A6, 91-84-1 and UCR1780. Pathogenicity tests were carried out in late-June 2020. Fifty 120-day-old healthy seedlings were wounded with 2 mm deep at stems in the collar region of plants at 5 cm above the soil for tested. The seedlings were inoculated on the wound with 3-mm mycelial discs from a 7-day-old culture of each four representative strains of 10 repeated, respectively. Ten seedlings inoculated on the wound with sterile PDA served as control. All plants were grown in an incubator with a 28°C temperature. After 20 days, the stems which were inoculated the representative strain turned brown, with 2 - 5 cm length lesion, and the plants developed typical wilting and withering symptoms which similar to those observed in the field. The control remained asymptomatic. The pathogen was reisolated from the inoculated stems and its identity confirmed with both morphology and using molecular tools. These results indicated that the pathogens of yellowhorn collar rot is F. solani. To our knowledge, this is the first report of F. solani causing collar rot of yellowhorn in China.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant disease
Plant disease 农林科学-植物科学
CiteScore
5.10
自引率
13.30%
发文量
1993
审稿时长
2 months
期刊介绍: Plant Disease is the leading international journal for rapid reporting of research on new, emerging, and established plant diseases. The journal publishes papers that describe basic and applied research focusing on practical aspects of disease diagnosis, development, and management.
期刊最新文献
Horizontal and Vertical Distribution of Clarireedia spp. in Asymptomatic and Symptomatic Creeping Bentgrass Cultivars. Scab Intensity in Pecan Trees in Relation to Hedge-Pruning Methods. Fusarium oxysporum f. sp. apii Race 4 Threatening Celery Production in South Florida. Construction of an Infectious Clone of Citrus Chlorotic Dwarf-Associated Virus and Confirmation of Its Pathogenicity. First Report of Lelliottia amnigena Causing Soft Rot on Purple Stem Mustards in China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1