分化的 C2C12 肌肉细胞可促进 A 型产气荚膜梭菌 ATCC3624 的毒素产生和生长。

IF 5.5 1区 农林科学 Q1 IMMUNOLOGY Virulence Pub Date : 2024-12-01 Epub Date: 2024-08-27 DOI:10.1080/21505594.2024.2388219
Jihong Li, Sameera Sayeed, Bruce A McClane
{"title":"分化的 C2C12 肌肉细胞可促进 A 型产气荚膜梭菌 ATCC3624 的毒素产生和生长。","authors":"Jihong Li, Sameera Sayeed, Bruce A McClane","doi":"10.1080/21505594.2024.2388219","DOIUrl":null,"url":null,"abstract":"<p><p><i>Clostridium perfringens</i> type A causes gas gangrene, which involves muscle infection. Both alpha toxin (PLC), encoded by the <i>plc</i> gene, and perfringolysin O (PFO), encoded by the <i>pfoA</i> gene, are important when type A strains cause gas gangrene in a mouse model. This study used the differentiated C2C12 muscle cell line to test the hypothesis that one or both of those toxins contributes to gas gangrene pathogenesis by releasing growth nutrients from muscle cells. RT-qPCR analyses showed that the presence of differentiated C2C12 cells induces <i>C. perfringens</i> type A strain ATCC3624 to upregulate <i>plc</i> and <i>pfoA</i> expression, as well as increase expression of several regulatory genes, including <i>virS/R</i>, <i>agrB/D</i>, and <i>eutV/W</i>. The VirS/R two component regulatory system (TCRS) and its coupled Agr-like quorum sensing system, along with the EutV/W TCRS (which regulates expression of genes involved in ethanolamine [EA] utilization), were shown to mediate the C2C12 cell-induced increase in <i>plc</i> and <i>pfoA</i> expression. EA was demonstrated to increase toxin gene expression. ATCC3624 growth increased in the presence of differentiated C2C12 muscle cells and this effect was shown to involve both PFO and PLC. Those membrane-active toxins were each cytotoxic for differentiated C2C12 cells, suggesting they support ATCC3624 growth by releasing nutrients from differentiated C2C12 cells. These findings support a model where, during gas gangrene, increased production of PFO and PLC in the presence of muscle cells causes more damage to those host cells, which release nutrients like EA that are then used to support <i>C. perfringens</i> growth in muscle.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364075/pdf/","citationCount":"0","resultStr":"{\"title\":\"The presence of differentiated C2C12 muscle cells enhances toxin production and growth by <i>Clostridium perfringens</i> type A strain ATCC3624.\",\"authors\":\"Jihong Li, Sameera Sayeed, Bruce A McClane\",\"doi\":\"10.1080/21505594.2024.2388219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Clostridium perfringens</i> type A causes gas gangrene, which involves muscle infection. Both alpha toxin (PLC), encoded by the <i>plc</i> gene, and perfringolysin O (PFO), encoded by the <i>pfoA</i> gene, are important when type A strains cause gas gangrene in a mouse model. This study used the differentiated C2C12 muscle cell line to test the hypothesis that one or both of those toxins contributes to gas gangrene pathogenesis by releasing growth nutrients from muscle cells. RT-qPCR analyses showed that the presence of differentiated C2C12 cells induces <i>C. perfringens</i> type A strain ATCC3624 to upregulate <i>plc</i> and <i>pfoA</i> expression, as well as increase expression of several regulatory genes, including <i>virS/R</i>, <i>agrB/D</i>, and <i>eutV/W</i>. The VirS/R two component regulatory system (TCRS) and its coupled Agr-like quorum sensing system, along with the EutV/W TCRS (which regulates expression of genes involved in ethanolamine [EA] utilization), were shown to mediate the C2C12 cell-induced increase in <i>plc</i> and <i>pfoA</i> expression. EA was demonstrated to increase toxin gene expression. ATCC3624 growth increased in the presence of differentiated C2C12 muscle cells and this effect was shown to involve both PFO and PLC. Those membrane-active toxins were each cytotoxic for differentiated C2C12 cells, suggesting they support ATCC3624 growth by releasing nutrients from differentiated C2C12 cells. These findings support a model where, during gas gangrene, increased production of PFO and PLC in the presence of muscle cells causes more damage to those host cells, which release nutrients like EA that are then used to support <i>C. perfringens</i> growth in muscle.</p>\",\"PeriodicalId\":23747,\"journal\":{\"name\":\"Virulence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364075/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virulence\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/21505594.2024.2388219\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virulence","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21505594.2024.2388219","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

A 型产气荚膜梭菌会引起气性坏疽,包括肌肉感染。由 plc 基因编码的α毒素(PLC)和由 pfoA 基因编码的产气荚膜溶解素 O(PFO)在小鼠模型中 A 型菌株导致气性坏疽时都很重要。本研究利用已分化的 C2C12 肌肉细胞系来验证一种假设,即这些毒素中的一种或两种毒素通过释放肌肉细胞中的生长营养素而导致气性坏疽的发病。RT-qPCR分析表明,分化的C2C12细胞的存在会诱导C. perfringens A型菌株ATCC3624上调plc和pfoA的表达,并增加几个调控基因的表达,包括virS/R、agrB/D和eutV/W。研究表明,VirS/R 双组分调控系统(TCRS)及其耦合的 Agr 类法定量感应系统以及 EutV/W TCRS(调控参与乙醇胺 [EA] 利用的基因的表达)介导了 C2C12 细胞诱导的 plc 和 pfoA 表达的增加。EA 被证明能增加毒素基因的表达。在分化的 C2C12 肌肉细胞存在的情况下,ATCC3624 的生长速度加快,这种效应涉及 PFO 和 PLC。这些膜活性毒素对已分化的 C2C12 细胞都具有细胞毒性,表明它们通过释放已分化的 C2C12 细胞中的营养物质来支持 ATCC3624 的生长。这些发现支持这样一个模型:在气性坏疽过程中,肌肉细胞中PFO和PLC的生成增加会对这些宿主细胞造成更大的损害,而宿主细胞会释放出EA等营养物质,这些营养物质随后被用于支持产气荚膜杆菌在肌肉中的生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The presence of differentiated C2C12 muscle cells enhances toxin production and growth by Clostridium perfringens type A strain ATCC3624.

Clostridium perfringens type A causes gas gangrene, which involves muscle infection. Both alpha toxin (PLC), encoded by the plc gene, and perfringolysin O (PFO), encoded by the pfoA gene, are important when type A strains cause gas gangrene in a mouse model. This study used the differentiated C2C12 muscle cell line to test the hypothesis that one or both of those toxins contributes to gas gangrene pathogenesis by releasing growth nutrients from muscle cells. RT-qPCR analyses showed that the presence of differentiated C2C12 cells induces C. perfringens type A strain ATCC3624 to upregulate plc and pfoA expression, as well as increase expression of several regulatory genes, including virS/R, agrB/D, and eutV/W. The VirS/R two component regulatory system (TCRS) and its coupled Agr-like quorum sensing system, along with the EutV/W TCRS (which regulates expression of genes involved in ethanolamine [EA] utilization), were shown to mediate the C2C12 cell-induced increase in plc and pfoA expression. EA was demonstrated to increase toxin gene expression. ATCC3624 growth increased in the presence of differentiated C2C12 muscle cells and this effect was shown to involve both PFO and PLC. Those membrane-active toxins were each cytotoxic for differentiated C2C12 cells, suggesting they support ATCC3624 growth by releasing nutrients from differentiated C2C12 cells. These findings support a model where, during gas gangrene, increased production of PFO and PLC in the presence of muscle cells causes more damage to those host cells, which release nutrients like EA that are then used to support C. perfringens growth in muscle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Virulence
Virulence IMMUNOLOGY-MICROBIOLOGY
CiteScore
9.20
自引率
1.90%
发文量
123
审稿时长
6-12 weeks
期刊介绍: Virulence is a fully open access peer-reviewed journal. All articles will (if accepted) be available for anyone to read anywhere, at any time immediately on publication. Virulence is the first international peer-reviewed journal of its kind to focus exclusively on microbial pathogenicity, the infection process and host-pathogen interactions. To address the new infectious challenges, emerging infectious agents and antimicrobial resistance, there is a clear need for interdisciplinary research.
期刊最新文献
Dry eye disease caused by viral infection: Past, present and future. The host protein CALCOCO2 interacts with bovine viral diarrhoea virus Npro, inhibiting type I interferon production and thereby promoting viral replication. Pathogenicity and virulence of Acinetobacter baumannii: Factors contributing to the fitness in healthcare settings and the infected host. Unraveling the interplay between unicellular parasites and bacterial biofilms: Implications for disease persistence and antibiotic resistance. Correction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1