微型模块化荧光流式细胞仪系统

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Biosensors-Basel Pub Date : 2024-08-16 DOI:10.3390/bios14080395
Shaoqi Huang, Jiale Li, Li Wei, Lulu Zheng, Zheng Shi, Shiwei Guo, Bo Dai, Dawei Zhang, Songlin Zhuang
{"title":"微型模块化荧光流式细胞仪系统","authors":"Shaoqi Huang, Jiale Li, Li Wei, Lulu Zheng, Zheng Shi, Shiwei Guo, Bo Dai, Dawei Zhang, Songlin Zhuang","doi":"10.3390/bios14080395","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescence flow cytometry is a powerful instrument to distinguish cells or particles labelled with high-specificity fluorophores. However, traditional flow cytometry is complex, bulky, and inconvenient for users to adjust fluorescence channels. In this paper, we present a modular fluorescence flow cytometry (M-FCM) system in which fluorescence channels can be flexibly arranged. Modules for particle focusing and fluorescence detection were developed. After hydrodynamical focusing, the cells were measured in the detection modules, which were integrated with in situ illumination and fluorescence detection. The signal-to-noise ratio of the detection reached to 33.2 dB. The crosstalk among the fluorescence channels was eliminated. The M-FCM system was applied to evaluate cell viability in drug screening, agreeing well with the commercial cytometry. The modular cytometry presents several outstanding features: flexibility in setting fluorescence channels, cost efficiency, compact construction, ease of operation, and the potential to upgrade for multifunctional measurements. The modular cytometry provides a multifunctional platform for various biophysical measurements, e.g., electrical impedance and refractive-index detection. The proposed work paves an innovative avenue for the multivariate analysis of cellular characteristics.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11353081/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Miniature Modular Fluorescence Flow Cytometry System.\",\"authors\":\"Shaoqi Huang, Jiale Li, Li Wei, Lulu Zheng, Zheng Shi, Shiwei Guo, Bo Dai, Dawei Zhang, Songlin Zhuang\",\"doi\":\"10.3390/bios14080395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fluorescence flow cytometry is a powerful instrument to distinguish cells or particles labelled with high-specificity fluorophores. However, traditional flow cytometry is complex, bulky, and inconvenient for users to adjust fluorescence channels. In this paper, we present a modular fluorescence flow cytometry (M-FCM) system in which fluorescence channels can be flexibly arranged. Modules for particle focusing and fluorescence detection were developed. After hydrodynamical focusing, the cells were measured in the detection modules, which were integrated with in situ illumination and fluorescence detection. The signal-to-noise ratio of the detection reached to 33.2 dB. The crosstalk among the fluorescence channels was eliminated. The M-FCM system was applied to evaluate cell viability in drug screening, agreeing well with the commercial cytometry. The modular cytometry presents several outstanding features: flexibility in setting fluorescence channels, cost efficiency, compact construction, ease of operation, and the potential to upgrade for multifunctional measurements. The modular cytometry provides a multifunctional platform for various biophysical measurements, e.g., electrical impedance and refractive-index detection. The proposed work paves an innovative avenue for the multivariate analysis of cellular characteristics.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11353081/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios14080395\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14080395","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

荧光流式细胞仪是一种功能强大的仪器,可用于区分被高特异性荧光团标记的细胞或颗粒。然而,传统的流式细胞仪结构复杂、体积庞大,而且用户不方便调整荧光通道。在本文中,我们介绍了一种模块化荧光流式细胞仪(M-FCM)系统,其中的荧光通道可以灵活排列。我们开发了用于粒子聚焦和荧光检测的模块。流体力学聚焦后,细胞在检测模块中进行测量,检测模块集成了原位照明和荧光检测功能。检测的信噪比达到 33.2 dB。消除了荧光通道之间的串扰。M-FCM 系统被应用于评估药物筛选中的细胞活力,与商业化的细胞测量法不谋而合。模块化细胞仪具有几个突出的特点:灵活设置荧光通道、成本效益高、结构紧凑、操作简便,以及可升级进行多功能测量。模块化细胞仪为电阻抗和折射率检测等各种生物物理测量提供了多功能平台。拟议的工作为细胞特性的多元分析铺平了一条创新之路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Miniature Modular Fluorescence Flow Cytometry System.

Fluorescence flow cytometry is a powerful instrument to distinguish cells or particles labelled with high-specificity fluorophores. However, traditional flow cytometry is complex, bulky, and inconvenient for users to adjust fluorescence channels. In this paper, we present a modular fluorescence flow cytometry (M-FCM) system in which fluorescence channels can be flexibly arranged. Modules for particle focusing and fluorescence detection were developed. After hydrodynamical focusing, the cells were measured in the detection modules, which were integrated with in situ illumination and fluorescence detection. The signal-to-noise ratio of the detection reached to 33.2 dB. The crosstalk among the fluorescence channels was eliminated. The M-FCM system was applied to evaluate cell viability in drug screening, agreeing well with the commercial cytometry. The modular cytometry presents several outstanding features: flexibility in setting fluorescence channels, cost efficiency, compact construction, ease of operation, and the potential to upgrade for multifunctional measurements. The modular cytometry provides a multifunctional platform for various biophysical measurements, e.g., electrical impedance and refractive-index detection. The proposed work paves an innovative avenue for the multivariate analysis of cellular characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Ru@UiO-66-NH2 MOFs-Based Dual Emission Ratiometric Fluorescence for Sensitive Sensing of Arginine. Source Localization and Classification of Pulmonary Valve-Originated Electrocardiograms Using Volume Conductor Modeling with Anatomical Models. Prediction of Thrombus Formation within an Oxygenator via Bioimpedance Analysis. Electrochemical Analysis of Amyloid Plaques and ApoE4 with Chitosan-Coated Gold Nanostars for Alzheimer's Detection. Enhancing Target Detection: A Fluorescence-Based Streptavidin-Bead Displacement Assay.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1