{"title":"含有胶凝材料胶囊和高炉矿渣集料的自愈合水泥复合材料的抗压强度、抗氯离子渗透性和裂缝恢复性能","authors":"Jae-In Lee, Se-Jin Choi","doi":"10.1016/j.jcou.2024.102916","DOIUrl":null,"url":null,"abstract":"<div><p>Blast-furnace-slag aggregate (BFSA), a by-product of the steel industry, is an eco-friendly natural, aggregate substitute used in mortar and concrete. However, research on self-healing cement composites using BFSA is rare. In this study, the compressive strength, chloride-ion-penetration resistance, and crack-recovery properties of self-healing cement mortar samples prepared using cementitious material capsules (CMC) and BFSA of different ratios were examined and compared to a control sample. The test samples were: Control; C05B00 (5 % CMC and 0 % BFSA); C05B25 (5 % CMC and 25 % BFSA); C05B50 (5 % CMC and 50 % BFSA); C10B00 (10 % CMC and 0 % BFSA); C10B25 (10 % CMC and 25 % BFSA); and C10B50 (10 % CMC and 50 % BFSA). The compressive-strength recovery rate of the control stopped increasing after 28 days and was approximately 110 % on day 56 – that of C10B50 was approximately 121 %, (∼10 % greater than that of the control) and continued to increase even after 56 d. The chloride-ion-penetration resistance of C10B50 was excellent; the 28-day total charge was approximately 5858 C (∼ 40.2 % lower than that of the control). The crack-recovery rates, on day 28, of C05B50 and C10B25 were 71 % and 70 %, respectively (∼ 29–30 % higher than that of the control).</p></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"86 ","pages":"Article 102916"},"PeriodicalIF":7.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212982024002518/pdfft?md5=1a423d2df301f0b540fbdfe1484c5474&pid=1-s2.0-S2212982024002518-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Compressive strength, chloride-ion-penetration resistance, and crack-recovery properties of self-healing cement composites containing cementitious material capsules and blast-furnace-slag aggregates\",\"authors\":\"Jae-In Lee, Se-Jin Choi\",\"doi\":\"10.1016/j.jcou.2024.102916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Blast-furnace-slag aggregate (BFSA), a by-product of the steel industry, is an eco-friendly natural, aggregate substitute used in mortar and concrete. However, research on self-healing cement composites using BFSA is rare. In this study, the compressive strength, chloride-ion-penetration resistance, and crack-recovery properties of self-healing cement mortar samples prepared using cementitious material capsules (CMC) and BFSA of different ratios were examined and compared to a control sample. The test samples were: Control; C05B00 (5 % CMC and 0 % BFSA); C05B25 (5 % CMC and 25 % BFSA); C05B50 (5 % CMC and 50 % BFSA); C10B00 (10 % CMC and 0 % BFSA); C10B25 (10 % CMC and 25 % BFSA); and C10B50 (10 % CMC and 50 % BFSA). The compressive-strength recovery rate of the control stopped increasing after 28 days and was approximately 110 % on day 56 – that of C10B50 was approximately 121 %, (∼10 % greater than that of the control) and continued to increase even after 56 d. The chloride-ion-penetration resistance of C10B50 was excellent; the 28-day total charge was approximately 5858 C (∼ 40.2 % lower than that of the control). The crack-recovery rates, on day 28, of C05B50 and C10B25 were 71 % and 70 %, respectively (∼ 29–30 % higher than that of the control).</p></div>\",\"PeriodicalId\":350,\"journal\":{\"name\":\"Journal of CO2 Utilization\",\"volume\":\"86 \",\"pages\":\"Article 102916\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212982024002518/pdfft?md5=1a423d2df301f0b540fbdfe1484c5474&pid=1-s2.0-S2212982024002518-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of CO2 Utilization\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212982024002518\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982024002518","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Compressive strength, chloride-ion-penetration resistance, and crack-recovery properties of self-healing cement composites containing cementitious material capsules and blast-furnace-slag aggregates
Blast-furnace-slag aggregate (BFSA), a by-product of the steel industry, is an eco-friendly natural, aggregate substitute used in mortar and concrete. However, research on self-healing cement composites using BFSA is rare. In this study, the compressive strength, chloride-ion-penetration resistance, and crack-recovery properties of self-healing cement mortar samples prepared using cementitious material capsules (CMC) and BFSA of different ratios were examined and compared to a control sample. The test samples were: Control; C05B00 (5 % CMC and 0 % BFSA); C05B25 (5 % CMC and 25 % BFSA); C05B50 (5 % CMC and 50 % BFSA); C10B00 (10 % CMC and 0 % BFSA); C10B25 (10 % CMC and 25 % BFSA); and C10B50 (10 % CMC and 50 % BFSA). The compressive-strength recovery rate of the control stopped increasing after 28 days and was approximately 110 % on day 56 – that of C10B50 was approximately 121 %, (∼10 % greater than that of the control) and continued to increase even after 56 d. The chloride-ion-penetration resistance of C10B50 was excellent; the 28-day total charge was approximately 5858 C (∼ 40.2 % lower than that of the control). The crack-recovery rates, on day 28, of C05B50 and C10B25 were 71 % and 70 %, respectively (∼ 29–30 % higher than that of the control).
期刊介绍:
The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials.
The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications.
The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.