{"title":"有跳跃的 SDE 的一类自适应数值方法的强收敛性","authors":"Cónall Kelly , Gabriel J. Lord , Fandi Sun","doi":"10.1016/j.matcom.2024.08.020","DOIUrl":null,"url":null,"abstract":"<div><p>We develop adaptive time-stepping strategies for Itô-type stochastic differential equations (SDEs) with jump perturbations. Our approach builds on adaptive strategies for SDEs.</p><p>Adaptive methods can ensure strong convergence of nonlinear SDEs with drift and diffusion coefficients that violate global Lipschitz bounds by adjusting the stepsize dynamically on each trajectory to prevent spurious growth that can lead to loss of convergence if it occurs with sufficiently high probability.</p><p>In this article, we demonstrate the use of a jump-adapted mesh that incorporates jump times into the adaptive time-stepping strategy. We prove that any adaptive scheme satisfying a particular mean-square consistency bound for a nonlinear SDE in the non-jump case may be extended to a strongly convergent scheme in the Poisson jump case, where the jump and diffusion perturbations are mutually independent, and the jump coefficient satisfies a global Lipschitz condition.</p></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"227 ","pages":"Pages 461-476"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378475424003227/pdfft?md5=7dddf25047fdd3399cc3a6db60ec7de1&pid=1-s2.0-S0378475424003227-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Strong convergence of a class of adaptive numerical methods for SDEs with jumps\",\"authors\":\"Cónall Kelly , Gabriel J. Lord , Fandi Sun\",\"doi\":\"10.1016/j.matcom.2024.08.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We develop adaptive time-stepping strategies for Itô-type stochastic differential equations (SDEs) with jump perturbations. Our approach builds on adaptive strategies for SDEs.</p><p>Adaptive methods can ensure strong convergence of nonlinear SDEs with drift and diffusion coefficients that violate global Lipschitz bounds by adjusting the stepsize dynamically on each trajectory to prevent spurious growth that can lead to loss of convergence if it occurs with sufficiently high probability.</p><p>In this article, we demonstrate the use of a jump-adapted mesh that incorporates jump times into the adaptive time-stepping strategy. We prove that any adaptive scheme satisfying a particular mean-square consistency bound for a nonlinear SDE in the non-jump case may be extended to a strongly convergent scheme in the Poisson jump case, where the jump and diffusion perturbations are mutually independent, and the jump coefficient satisfies a global Lipschitz condition.</p></div>\",\"PeriodicalId\":49856,\"journal\":{\"name\":\"Mathematics and Computers in Simulation\",\"volume\":\"227 \",\"pages\":\"Pages 461-476\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378475424003227/pdfft?md5=7dddf25047fdd3399cc3a6db60ec7de1&pid=1-s2.0-S0378475424003227-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Computers in Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424003227\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003227","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Strong convergence of a class of adaptive numerical methods for SDEs with jumps
We develop adaptive time-stepping strategies for Itô-type stochastic differential equations (SDEs) with jump perturbations. Our approach builds on adaptive strategies for SDEs.
Adaptive methods can ensure strong convergence of nonlinear SDEs with drift and diffusion coefficients that violate global Lipschitz bounds by adjusting the stepsize dynamically on each trajectory to prevent spurious growth that can lead to loss of convergence if it occurs with sufficiently high probability.
In this article, we demonstrate the use of a jump-adapted mesh that incorporates jump times into the adaptive time-stepping strategy. We prove that any adaptive scheme satisfying a particular mean-square consistency bound for a nonlinear SDE in the non-jump case may be extended to a strongly convergent scheme in the Poisson jump case, where the jump and diffusion perturbations are mutually independent, and the jump coefficient satisfies a global Lipschitz condition.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.