{"title":"对映选择性 Csp3-Csp3 交叉偶联的辐射控制","authors":"Ju Byeong Chae, Annika R. Holm, Liviu M. Mirica","doi":"10.1038/s41929-024-01208-2","DOIUrl":null,"url":null,"abstract":"The enantioselective formation of Csp3–Csp3 bonds is still a substantial challenge in the synthesis of complex molecules. Now, a photocatalytic system has been developed for the enantioselective alkylation of α-amino Csp3−H bonds that promotes the generation of two different alkyl radicals, followed by their cross-coupling at a chiral nickel centre.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 8","pages":"857-859"},"PeriodicalIF":42.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radical control for enantioselective Csp3–Csp3 cross-coupling\",\"authors\":\"Ju Byeong Chae, Annika R. Holm, Liviu M. Mirica\",\"doi\":\"10.1038/s41929-024-01208-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The enantioselective formation of Csp3–Csp3 bonds is still a substantial challenge in the synthesis of complex molecules. Now, a photocatalytic system has been developed for the enantioselective alkylation of α-amino Csp3−H bonds that promotes the generation of two different alkyl radicals, followed by their cross-coupling at a chiral nickel centre.\",\"PeriodicalId\":18845,\"journal\":{\"name\":\"Nature Catalysis\",\"volume\":\"7 8\",\"pages\":\"857-859\"},\"PeriodicalIF\":42.8000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41929-024-01208-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-024-01208-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Radical control for enantioselective Csp3–Csp3 cross-coupling
The enantioselective formation of Csp3–Csp3 bonds is still a substantial challenge in the synthesis of complex molecules. Now, a photocatalytic system has been developed for the enantioselective alkylation of α-amino Csp3−H bonds that promotes the generation of two different alkyl radicals, followed by their cross-coupling at a chiral nickel centre.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.