{"title":"用于阴离子交换膜电解水的结构催化剂","authors":"","doi":"10.1038/s41929-024-01210-8","DOIUrl":null,"url":null,"abstract":"A heterogeneous nucleation strategy is used to synthesize a NiFe oxygen evolution reaction catalyst for anion exchange membrane water electrolysis. The resulting catalyst has high electrochemical activity and achieves a stable performance for over 21 months owing to a dense interlayer, which anchors the catalytic layer to the metal substrate.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 8","pages":"866-867"},"PeriodicalIF":42.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A structured catalyst for anion exchange membrane water electrolysis\",\"authors\":\"\",\"doi\":\"10.1038/s41929-024-01210-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A heterogeneous nucleation strategy is used to synthesize a NiFe oxygen evolution reaction catalyst for anion exchange membrane water electrolysis. The resulting catalyst has high electrochemical activity and achieves a stable performance for over 21 months owing to a dense interlayer, which anchors the catalytic layer to the metal substrate.\",\"PeriodicalId\":18845,\"journal\":{\"name\":\"Nature Catalysis\",\"volume\":\"7 8\",\"pages\":\"866-867\"},\"PeriodicalIF\":42.8000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41929-024-01210-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-024-01210-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A structured catalyst for anion exchange membrane water electrolysis
A heterogeneous nucleation strategy is used to synthesize a NiFe oxygen evolution reaction catalyst for anion exchange membrane water electrolysis. The resulting catalyst has high electrochemical activity and achieves a stable performance for over 21 months owing to a dense interlayer, which anchors the catalytic layer to the metal substrate.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.