{"title":"在镍光氧化催化中利用富电子烯烃","authors":"Sneha Nayak, Laura K. G. Ackerman-Biegasiewicz","doi":"10.1038/s41929-024-01196-3","DOIUrl":null,"url":null,"abstract":"Nickel photoredox catalysis is often limited to electron-deficient and neutral arenes. Arylthianthrenium salts can now be used as redox-active reagents to afford general reactivity with electron-rich arenes.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 8","pages":"855-856"},"PeriodicalIF":42.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing electron-rich arenes in nickel photoredox catalysis\",\"authors\":\"Sneha Nayak, Laura K. G. Ackerman-Biegasiewicz\",\"doi\":\"10.1038/s41929-024-01196-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nickel photoredox catalysis is often limited to electron-deficient and neutral arenes. Arylthianthrenium salts can now be used as redox-active reagents to afford general reactivity with electron-rich arenes.\",\"PeriodicalId\":18845,\"journal\":{\"name\":\"Nature Catalysis\",\"volume\":\"7 8\",\"pages\":\"855-856\"},\"PeriodicalIF\":42.8000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41929-024-01196-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-024-01196-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Harnessing electron-rich arenes in nickel photoredox catalysis
Nickel photoredox catalysis is often limited to electron-deficient and neutral arenes. Arylthianthrenium salts can now be used as redox-active reagents to afford general reactivity with electron-rich arenes.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.