Yi Zhong, Gaozheng Li, Ji Yang, Houbing Zheng, Yongqiang Yu, Jiheng Zhang, Heng Luo, Biao Wang, Zuquan Weng
{"title":"通过局部-全局自我关注,学习基于图案的药物相互作用预测图谱","authors":"Yi Zhong, Gaozheng Li, Ji Yang, Houbing Zheng, Yongqiang Yu, Jiheng Zhang, Heng Luo, Biao Wang, Zuquan Weng","doi":"10.1038/s42256-024-00888-6","DOIUrl":null,"url":null,"abstract":"Unexpected drug–drug interactions (DDIs) are important issues for both pharmaceutical research and clinical applications due to the high risk of causing severe adverse drug reactions or drug withdrawals. Many deep learning models have achieved high performance in DDI prediction, but model interpretability to reveal the underlying causes of DDIs has not been extensively explored. Here we propose MeTDDI—a deep learning framework with local–global self-attention and co-attention to learn motif-based graphs for DDI prediction. MeTDDI achieved competitive performance compared with state-of-the-art models. Regarding interpretability, we conducted extensive assessments on 73 drugs with 13,786 DDIs and MeTDDI can precisely explain the structural mechanisms for 5,602 DDIs involving 58 drugs. Besides, MeTDDI shows potential to explain complex DDI mechanisms and mitigate DDI risks. To summarize, MeTDDI provides a new perspective on exploring DDI mechanisms, which will benefit both drug discovery and polypharmacy for safer therapies for patients. A transformer-based approach that predicts drug–drug interactions in polypharmacy has been shown, which also identifies perpetrator drugs and the chemical mechanisms causing the interactions. The method could facilitate high-throughput optimization of drug combinations and mitigate adverse drug–drug interaction risks.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":null,"pages":null},"PeriodicalIF":18.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning motif-based graphs for drug–drug interaction prediction via local–global self-attention\",\"authors\":\"Yi Zhong, Gaozheng Li, Ji Yang, Houbing Zheng, Yongqiang Yu, Jiheng Zhang, Heng Luo, Biao Wang, Zuquan Weng\",\"doi\":\"10.1038/s42256-024-00888-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unexpected drug–drug interactions (DDIs) are important issues for both pharmaceutical research and clinical applications due to the high risk of causing severe adverse drug reactions or drug withdrawals. Many deep learning models have achieved high performance in DDI prediction, but model interpretability to reveal the underlying causes of DDIs has not been extensively explored. Here we propose MeTDDI—a deep learning framework with local–global self-attention and co-attention to learn motif-based graphs for DDI prediction. MeTDDI achieved competitive performance compared with state-of-the-art models. Regarding interpretability, we conducted extensive assessments on 73 drugs with 13,786 DDIs and MeTDDI can precisely explain the structural mechanisms for 5,602 DDIs involving 58 drugs. Besides, MeTDDI shows potential to explain complex DDI mechanisms and mitigate DDI risks. To summarize, MeTDDI provides a new perspective on exploring DDI mechanisms, which will benefit both drug discovery and polypharmacy for safer therapies for patients. A transformer-based approach that predicts drug–drug interactions in polypharmacy has been shown, which also identifies perpetrator drugs and the chemical mechanisms causing the interactions. The method could facilitate high-throughput optimization of drug combinations and mitigate adverse drug–drug interaction risks.\",\"PeriodicalId\":48533,\"journal\":{\"name\":\"Nature Machine Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.nature.com/articles/s42256-024-00888-6\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00888-6","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Learning motif-based graphs for drug–drug interaction prediction via local–global self-attention
Unexpected drug–drug interactions (DDIs) are important issues for both pharmaceutical research and clinical applications due to the high risk of causing severe adverse drug reactions or drug withdrawals. Many deep learning models have achieved high performance in DDI prediction, but model interpretability to reveal the underlying causes of DDIs has not been extensively explored. Here we propose MeTDDI—a deep learning framework with local–global self-attention and co-attention to learn motif-based graphs for DDI prediction. MeTDDI achieved competitive performance compared with state-of-the-art models. Regarding interpretability, we conducted extensive assessments on 73 drugs with 13,786 DDIs and MeTDDI can precisely explain the structural mechanisms for 5,602 DDIs involving 58 drugs. Besides, MeTDDI shows potential to explain complex DDI mechanisms and mitigate DDI risks. To summarize, MeTDDI provides a new perspective on exploring DDI mechanisms, which will benefit both drug discovery and polypharmacy for safer therapies for patients. A transformer-based approach that predicts drug–drug interactions in polypharmacy has been shown, which also identifies perpetrator drugs and the chemical mechanisms causing the interactions. The method could facilitate high-throughput optimization of drug combinations and mitigate adverse drug–drug interaction risks.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.