Anyu Shang, Benjamin Stegman, Xuanyu Sheng, Ke Xu, Yifan Zhang, Chao Shen, Emiliano Flores, Tanner McElroy, Haiyan Wang, Xinghang Zhang
{"title":"增材制造超强铝合金的高温拉伸行为","authors":"Anyu Shang, Benjamin Stegman, Xuanyu Sheng, Ke Xu, Yifan Zhang, Chao Shen, Emiliano Flores, Tanner McElroy, Haiyan Wang, Xinghang Zhang","doi":"10.1016/j.addlet.2024.100234","DOIUrl":null,"url":null,"abstract":"<div><p>Additively manufactured (AM) Al alloys have widespread applications. Their high-temperature mechanical behaviors are also of significant interest. In this study, we investigated the microstructure and mechanical behavior of Al-2Ti-2Fe-2Co-2Ni (at%) alloy processed by laser powder bed fusion. The as-printed alloy contains a distinctive heterogeneous microstructure characterized by nanoscale intermetallic lamellae arranged in rosette patterns in the Al matrix. Notably, this alloy exhibits high tensile strength and thermal stability up to 500 °C as revealed by in-situ tension studies in a scanning electron microscope. The enhanced high temperature performance can be attributed to a substantial volume fraction of well-dispersed, nanoscale stable intermetallic particles.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"11 ","pages":"Article 100234"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772369024000422/pdfft?md5=9c3e13483ce05908d95af7c80d08c72c&pid=1-s2.0-S2772369024000422-main.pdf","citationCount":"0","resultStr":"{\"title\":\"High-temperature tensile behaviors of an ultra-strong aluminum alloy fabricated by additive manufacturing\",\"authors\":\"Anyu Shang, Benjamin Stegman, Xuanyu Sheng, Ke Xu, Yifan Zhang, Chao Shen, Emiliano Flores, Tanner McElroy, Haiyan Wang, Xinghang Zhang\",\"doi\":\"10.1016/j.addlet.2024.100234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Additively manufactured (AM) Al alloys have widespread applications. Their high-temperature mechanical behaviors are also of significant interest. In this study, we investigated the microstructure and mechanical behavior of Al-2Ti-2Fe-2Co-2Ni (at%) alloy processed by laser powder bed fusion. The as-printed alloy contains a distinctive heterogeneous microstructure characterized by nanoscale intermetallic lamellae arranged in rosette patterns in the Al matrix. Notably, this alloy exhibits high tensile strength and thermal stability up to 500 °C as revealed by in-situ tension studies in a scanning electron microscope. The enhanced high temperature performance can be attributed to a substantial volume fraction of well-dispersed, nanoscale stable intermetallic particles.</p></div>\",\"PeriodicalId\":72068,\"journal\":{\"name\":\"Additive manufacturing letters\",\"volume\":\"11 \",\"pages\":\"Article 100234\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772369024000422/pdfft?md5=9c3e13483ce05908d95af7c80d08c72c&pid=1-s2.0-S2772369024000422-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772369024000422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369024000422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
High-temperature tensile behaviors of an ultra-strong aluminum alloy fabricated by additive manufacturing
Additively manufactured (AM) Al alloys have widespread applications. Their high-temperature mechanical behaviors are also of significant interest. In this study, we investigated the microstructure and mechanical behavior of Al-2Ti-2Fe-2Co-2Ni (at%) alloy processed by laser powder bed fusion. The as-printed alloy contains a distinctive heterogeneous microstructure characterized by nanoscale intermetallic lamellae arranged in rosette patterns in the Al matrix. Notably, this alloy exhibits high tensile strength and thermal stability up to 500 °C as revealed by in-situ tension studies in a scanning electron microscope. The enhanced high temperature performance can be attributed to a substantial volume fraction of well-dispersed, nanoscale stable intermetallic particles.