构建用作高性能锂离子电池负极的 2D/1D rGO/H2Ti3O7 复合材料

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Research Bulletin Pub Date : 2024-08-26 DOI:10.1016/j.materresbull.2024.113069
{"title":"构建用作高性能锂离子电池负极的 2D/1D rGO/H2Ti3O7 复合材料","authors":"","doi":"10.1016/j.materresbull.2024.113069","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrafine one-dimensional (1D) H<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> nanowires were prepared by a hydrothermal reaction with high concentration of KOH as base source. Then 2D/1D rGO/H<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> architecture was constructed and investigated as the anode material for lithium-ion batteries. Benefiting from the addition of rGO nanosheets and the retention of ultrafine 1D H<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> nanowires, the rGO/H<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> electrode presented superior electrochemical performance with excellent rate capability, long cycling stability and high capacity in half cells. It delivered high reversible capacities of 274 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup> and 163 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup>, as well as a long-term cycling performance (259.3 mAh g<sup>−1</sup> at 0.2 A g<sup>−1</sup> after 1000 cycles). The excellent electrochemical performance of the composite can be attributed to the unique architecture with smaller diameter of 1D H<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> nanowires and conductive rGO nanosheets to shorten the transmission distance of electrons and Li<sup>+</sup> and improve the electrical conductivity in rGO/H<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> composite.</p></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of 2D/1D rGO/H2Ti3O7 composite as anode for high performance lithium-ion batteries\",\"authors\":\"\",\"doi\":\"10.1016/j.materresbull.2024.113069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ultrafine one-dimensional (1D) H<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> nanowires were prepared by a hydrothermal reaction with high concentration of KOH as base source. Then 2D/1D rGO/H<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> architecture was constructed and investigated as the anode material for lithium-ion batteries. Benefiting from the addition of rGO nanosheets and the retention of ultrafine 1D H<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> nanowires, the rGO/H<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> electrode presented superior electrochemical performance with excellent rate capability, long cycling stability and high capacity in half cells. It delivered high reversible capacities of 274 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup> and 163 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup>, as well as a long-term cycling performance (259.3 mAh g<sup>−1</sup> at 0.2 A g<sup>−1</sup> after 1000 cycles). The excellent electrochemical performance of the composite can be attributed to the unique architecture with smaller diameter of 1D H<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> nanowires and conductive rGO nanosheets to shorten the transmission distance of electrons and Li<sup>+</sup> and improve the electrical conductivity in rGO/H<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> composite.</p></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540824004008\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824004008","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以高浓度 KOH 为基源,通过水热反应制备了超细一维 (1D) H2Ti3O7 纳米线。然后构建了二维/一维 rGO/H2Ti3O7 结构,并将其作为锂离子电池的负极材料进行了研究。得益于 rGO 纳米片的添加和超细一维 H2Ti3O7 纳米线的保留,rGO/H2Ti3O7 电极具有优异的电化学性能,在半电池中具有出色的速率能力、长循环稳定性和高容量。在 0.1 A g-1 和 1 A g-1 条件下,其可逆容量分别达到 274 mAh g-1 和 163 mAh g-1,并且具有长期循环性能(1000 次循环后,在 0.2 A g-1 条件下可达到 259.3 mAh g-1)。该复合材料优异的电化学性能归功于其独特的结构,即直径较小的一维 H2Ti3O7 纳米线和导电 rGO 纳米片,从而缩短了电子和 Li+ 的传输距离,提高了 rGO/H2Ti3O7 复合材料的导电性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction of 2D/1D rGO/H2Ti3O7 composite as anode for high performance lithium-ion batteries

Ultrafine one-dimensional (1D) H2Ti3O7 nanowires were prepared by a hydrothermal reaction with high concentration of KOH as base source. Then 2D/1D rGO/H2Ti3O7 architecture was constructed and investigated as the anode material for lithium-ion batteries. Benefiting from the addition of rGO nanosheets and the retention of ultrafine 1D H2Ti3O7 nanowires, the rGO/H2Ti3O7 electrode presented superior electrochemical performance with excellent rate capability, long cycling stability and high capacity in half cells. It delivered high reversible capacities of 274 mAh g−1 at 0.1 A g−1 and 163 mAh g−1 at 1 A g−1, as well as a long-term cycling performance (259.3 mAh g−1 at 0.2 A g−1 after 1000 cycles). The excellent electrochemical performance of the composite can be attributed to the unique architecture with smaller diameter of 1D H2Ti3O7 nanowires and conductive rGO nanosheets to shorten the transmission distance of electrons and Li+ and improve the electrical conductivity in rGO/H2Ti3O7 composite.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
期刊最新文献
Facile one-step fabrication of Li4Ti5O12 coatings by suspension plasma spraying Enhanced photocathodic protection performance of Co3S4 nanoparticles modified porous BiVO4 composites for 304 stainless steel Microwave, ferroelectric and electromechanical studies of free standing blended electroactive polymer films ZnO/carbon quantum dots nanocomposites derived from Moringa oleifera gum: An improved catalytic vitiation of methylene blue dye Thermal stable NaMgLaTeO6:Dy3+ double perovskite yellow phosphors for w-LEDs and latent fingerprint visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1