Facile one-step fabrication of Li4Ti5O12 coatings by suspension plasma spraying

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Research Bulletin Pub Date : 2024-09-27 DOI:10.1016/j.materresbull.2024.113111
Sribalaji Mathiyalagan , Stefan Björklund , Sandra Johansson Storm , Girish Salian , Ronan Le Ruyet , Reza Younesi , Shrikant Joshi
{"title":"Facile one-step fabrication of Li4Ti5O12 coatings by suspension plasma spraying","authors":"Sribalaji Mathiyalagan ,&nbsp;Stefan Björklund ,&nbsp;Sandra Johansson Storm ,&nbsp;Girish Salian ,&nbsp;Ronan Le Ruyet ,&nbsp;Reza Younesi ,&nbsp;Shrikant Joshi","doi":"10.1016/j.materresbull.2024.113111","DOIUrl":null,"url":null,"abstract":"<div><div>Spinel Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> (LTO) is a promising anode material for solid state thin film batteries (SSTB) due to its almost-zero volume change and promising Li-ion mobility. However, preparing LTO anodes for SSTB demands tedious vacuum-based processing steps that are not cost effective. In this context, the present study embarks on evaluating the versatile suspension plasma spraying (SPS) approach to fabricate LTO coatings without using any binder. The microstructure and stoichiometry of the fabricated LTO coatings developed through the SPS route reveals retention of ∼76 wt.% of the spinel LTO from the starting feedstock, with minor amounts of rutile and anatase TiO<sub>2</sub>. The SPS experiments yielded varying thickness build up rates of the LTO coatings depending on the processing parameters adopted. The electrochemical data of the produced LTO based electrode tested in a half-cell through galvanostatic cycling show reversible lithiation and delithiation at expected potential, thereby validating the promise of the SPS technique for potential fabrication of SSTB components once fully optimized.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"181 ","pages":"Article 113111"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824004422","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spinel Li4Ti5O12 (LTO) is a promising anode material for solid state thin film batteries (SSTB) due to its almost-zero volume change and promising Li-ion mobility. However, preparing LTO anodes for SSTB demands tedious vacuum-based processing steps that are not cost effective. In this context, the present study embarks on evaluating the versatile suspension plasma spraying (SPS) approach to fabricate LTO coatings without using any binder. The microstructure and stoichiometry of the fabricated LTO coatings developed through the SPS route reveals retention of ∼76 wt.% of the spinel LTO from the starting feedstock, with minor amounts of rutile and anatase TiO2. The SPS experiments yielded varying thickness build up rates of the LTO coatings depending on the processing parameters adopted. The electrochemical data of the produced LTO based electrode tested in a half-cell through galvanostatic cycling show reversible lithiation and delithiation at expected potential, thereby validating the promise of the SPS technique for potential fabrication of SSTB components once fully optimized.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过悬浮等离子喷涂一步法轻松制备 Li4Ti5O12 涂层
尖晶石 Li4Ti5O12(LTO)由于其几乎为零的体积变化和良好的锂离子迁移率,是一种很有前途的固态薄膜电池(SSTB)阳极材料。然而,制备用于 SSTB 的 LTO 阳极需要繁琐的真空处理步骤,成本效益不高。在这种情况下,本研究开始评估多功能悬浮等离子喷涂(SPS)方法,以在不使用任何粘合剂的情况下制造 LTO 涂层。通过 SPS 方法制备的 LTO 涂层的微观结构和化学计量显示,起始原料中保留了 76 wt.% 的尖晶石 LTO,以及少量金红石型和锐钛型 TiO2。根据所采用的加工参数,SPS 实验产生了不同厚度的 LTO 涂层。所生产的基于 LTO 的电极在半电池中通过电静力循环测试的电化学数据显示,在预期电位下可发生可逆的锂化和脱锂,从而验证了 SPS 技术在充分优化后用于制造 SSTB 组件的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
期刊最新文献
Effect of Cr substitution in ZnFe2O4 nanoparticles on the electron transfer at electrochemical interfaces Zn2+-decorated porous g-C3N4 with nitrogen vacancies: Synthesis, enhanced photocatalytic performance and mechanism in degrading organic contaminants Efficient enhancement of piezo-catalytic activity of BaTiO3-based piezoelectric ceramics via phase boundary engineering Interfacial coupling mechanism for efficient degradation of tetracycline by heteroatom iodine (I)-doped BiOBr under visible light: Efficacy and driving force Synthesis of molybdenum disulfide/covalent organic frameworks composite for efficient solar-driven hydrogen production and pollutant degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1