考虑渗流应力耦合效应的大型涉铁深基坑群耦合效应及施工变形控制研究

IF 5.1 3区 工程技术 Q2 ENERGY & FUELS Thermal Science and Engineering Progress Pub Date : 2024-08-05 DOI:10.1016/j.tsep.2024.102780
{"title":"考虑渗流应力耦合效应的大型涉铁深基坑群耦合效应及施工变形控制研究","authors":"","doi":"10.1016/j.tsep.2024.102780","DOIUrl":null,"url":null,"abstract":"<div><p>Due to factors such as groundwater seepage and soil stress coupling effect, significant deformation and instability problems often occur during the construction process of super large deep excavation groups involving iron, seriously affecting the safety and stability of the project. This article aims to explore the coupling effect of super large deep excavation groups involving railways during the construction process, and how to effectively control construction deformation. This article combines theoretical analysis and numerical simulation to study the coupled effects of seepage and stress during the construction process of super deep excavation groups involving iron. With the help of finite element software, a numerical model of a large and deep excavation group involving iron was established, and the deformation and stress distribution at different construction stages were simulated. The research results indicate that the coupling effect of groundwater seepage and soil stress has a significant impact on the deformation and stability of the super deep excavation group involving iron. Therefore, reasonable construction measures and deformation control methods should be taken during the construction process.</p></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the coupling effect and construction deformation control of large deep foundation pit groups involving iron considering the coupling effect of seepage stress\",\"authors\":\"\",\"doi\":\"10.1016/j.tsep.2024.102780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to factors such as groundwater seepage and soil stress coupling effect, significant deformation and instability problems often occur during the construction process of super large deep excavation groups involving iron, seriously affecting the safety and stability of the project. This article aims to explore the coupling effect of super large deep excavation groups involving railways during the construction process, and how to effectively control construction deformation. This article combines theoretical analysis and numerical simulation to study the coupled effects of seepage and stress during the construction process of super deep excavation groups involving iron. With the help of finite element software, a numerical model of a large and deep excavation group involving iron was established, and the deformation and stress distribution at different construction stages were simulated. The research results indicate that the coupling effect of groundwater seepage and soil stress has a significant impact on the deformation and stability of the super deep excavation group involving iron. Therefore, reasonable construction measures and deformation control methods should be taken during the construction process.</p></div>\",\"PeriodicalId\":23062,\"journal\":{\"name\":\"Thermal Science and Engineering Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Science and Engineering Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451904924003986\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904924003986","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

由于地下水渗流、土体应力耦合效应等因素的影响,涉铁超大型深基坑群施工过程中经常出现明显的变形和失稳问题,严重影响工程的安全和稳定。本文旨在探讨涉铁超大型深基坑群施工过程中的耦合效应,以及如何有效控制施工变形。本文结合理论分析和数值模拟,研究了涉铁超大深基坑群施工过程中渗流和应力的耦合效应。借助有限元软件,建立了大型深基坑涉铁群体的数值模型,模拟了不同施工阶段的变形和应力分布。研究结果表明,地下水渗流与土体应力的耦合效应对超深基坑群的变形和稳定性有重要影响。因此,在施工过程中应采取合理的施工措施和变形控制方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on the coupling effect and construction deformation control of large deep foundation pit groups involving iron considering the coupling effect of seepage stress

Due to factors such as groundwater seepage and soil stress coupling effect, significant deformation and instability problems often occur during the construction process of super large deep excavation groups involving iron, seriously affecting the safety and stability of the project. This article aims to explore the coupling effect of super large deep excavation groups involving railways during the construction process, and how to effectively control construction deformation. This article combines theoretical analysis and numerical simulation to study the coupled effects of seepage and stress during the construction process of super deep excavation groups involving iron. With the help of finite element software, a numerical model of a large and deep excavation group involving iron was established, and the deformation and stress distribution at different construction stages were simulated. The research results indicate that the coupling effect of groundwater seepage and soil stress has a significant impact on the deformation and stability of the super deep excavation group involving iron. Therefore, reasonable construction measures and deformation control methods should be taken during the construction process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thermal Science and Engineering Progress
Thermal Science and Engineering Progress Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
7.20
自引率
10.40%
发文量
327
审稿时长
41 days
期刊介绍: Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.
期刊最新文献
Influence of pitch and height of pentagonal ribbed absorber plate of solar air heater for performance enhancement with environmental analysis Diagnostic value of 4D pelvic floor ultrasound for postpartum mild to moderate pelvic organ prolapse in primiparas based on medical thermal imaging monitoring Percutaneous transhepatic cholecystic puncture and drainage combined with laparoscopic surgery in the treatment of acute cholecystitis based on medical thermal modeling Identification and functional network analysis of inflammatory and apoptosis-related genes associated with infectious chronic rhinosinusitis: Thermal modeling of medical biological systems Experimental study on the effect of Mongolian medicine warming acupuncture on proBDNF-tPA-BDNF balance in depression rats based on thermal imaging monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1