基于局部搜索的并行排序问题快速记忆算法

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-08-28 DOI:10.1016/j.amc.2024.129040
Gintaras Palubeckis
{"title":"基于局部搜索的并行排序问题快速记忆算法","authors":"Gintaras Palubeckis","doi":"10.1016/j.amc.2024.129040","DOIUrl":null,"url":null,"abstract":"<div><p>The parallel row ordering problem (PROP) is concerned with arranging two groups of facilities along two parallel lines with the goal of minimizing the sum of the flow cost-weighted distances between the pairs of facilities. As the main result of this paper, we show that the insertion neighborhood for the PROP can be explored in optimal time <span><math><mi>Θ</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> by providing an <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>-time procedure for performing this task, where <em>n</em> is the number of facilities. As a case study, we incorporate this procedure in a memetic algorithm (MA) for solving the PROP. We report on numerical experiments that we conducted with MA on PROP instances with up to 500 facilities. The experimental results demonstrate that the MA is superior to the adaptive iterated local search algorithm and the parallel hyper heuristic method, which are state-of-the-art for the PROP. Remarkably, our algorithm improved best known solutions for six largest instances in the literature. We conjecture that the time complexity of exploring the interchange neighborhood for the PROP is <span><math><mi>Θ</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>, exactly as in the case of insertion operation.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast local search based memetic algorithm for the parallel row ordering problem\",\"authors\":\"Gintaras Palubeckis\",\"doi\":\"10.1016/j.amc.2024.129040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The parallel row ordering problem (PROP) is concerned with arranging two groups of facilities along two parallel lines with the goal of minimizing the sum of the flow cost-weighted distances between the pairs of facilities. As the main result of this paper, we show that the insertion neighborhood for the PROP can be explored in optimal time <span><math><mi>Θ</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> by providing an <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>-time procedure for performing this task, where <em>n</em> is the number of facilities. As a case study, we incorporate this procedure in a memetic algorithm (MA) for solving the PROP. We report on numerical experiments that we conducted with MA on PROP instances with up to 500 facilities. The experimental results demonstrate that the MA is superior to the adaptive iterated local search algorithm and the parallel hyper heuristic method, which are state-of-the-art for the PROP. Remarkably, our algorithm improved best known solutions for six largest instances in the literature. We conjecture that the time complexity of exploring the interchange neighborhood for the PROP is <span><math><mi>Θ</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>, exactly as in the case of insertion operation.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005010\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005010","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

并行排序问题(PROP)涉及沿两条并行线排列两组设施,目标是使两组设施之间的流量成本加权距离之和最小。作为本文的主要成果,我们展示了 PROP 的插入邻域可以在最优时间 Θ(n2) 内探索,提供了一个 O(n2)-time 的程序来执行这项任务,其中 n 是设施的数量。作为一项案例研究,我们将这一程序纳入了用于求解 PROP 的记忆算法 (MA)。我们报告了在多达 500 个设施的 PROP 实例上使用 MA 进行的数值实验。实验结果表明,记忆算法优于自适应迭代局部搜索算法和并行超启发式方法,而这两种算法在 PROP 方面都是最先进的。值得注意的是,我们的算法改进了文献中六种最大实例的已知最佳解决方案。我们推测,探索 PROP 交换邻域的时间复杂度为 Θ(n2),与插入操作的情况完全相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fast local search based memetic algorithm for the parallel row ordering problem

The parallel row ordering problem (PROP) is concerned with arranging two groups of facilities along two parallel lines with the goal of minimizing the sum of the flow cost-weighted distances between the pairs of facilities. As the main result of this paper, we show that the insertion neighborhood for the PROP can be explored in optimal time Θ(n2) by providing an O(n2)-time procedure for performing this task, where n is the number of facilities. As a case study, we incorporate this procedure in a memetic algorithm (MA) for solving the PROP. We report on numerical experiments that we conducted with MA on PROP instances with up to 500 facilities. The experimental results demonstrate that the MA is superior to the adaptive iterated local search algorithm and the parallel hyper heuristic method, which are state-of-the-art for the PROP. Remarkably, our algorithm improved best known solutions for six largest instances in the literature. We conjecture that the time complexity of exploring the interchange neighborhood for the PROP is Θ(n2), exactly as in the case of insertion operation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1