基于离散变量的无线网络拓扑优化算法

Qingpeng Ran
{"title":"基于离散变量的无线网络拓扑优化算法","authors":"Qingpeng Ran","doi":"10.1016/j.sasc.2024.200142","DOIUrl":null,"url":null,"abstract":"<div><p>In response to the missing discrete variables in current wireless network topology optimization, an improved particle swarm optimization algorithm based on fusion of discrete variables is proposed to obtain network discrete variables. A wireless network topology optimization model is constructed. The research results indicate that it has better anti-interference performance in complex situations, which contributes to improving network load balancing. The topology obtained by this method has independence and predictability. When optimizing network topology, it has high network node coverage. When the network nodes are 50, 100, 150, and 200, the connectivity is 99.85 %, 93.64 %, 91.25 %, and 90.18 %, respectively. The testing time is 19s, 34s, 54s, and 64s respectively, which has the best optimization performance. The method can effectively improve the missing discrete variables in wireless network topology optimization, which has good performance.</p></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"6 ","pages":"Article 200142"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772941924000711/pdfft?md5=698719ce0fc9dccbde4a75805f80ca82&pid=1-s2.0-S2772941924000711-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Wireless network topology optimization algorithm based on discrete variables\",\"authors\":\"Qingpeng Ran\",\"doi\":\"10.1016/j.sasc.2024.200142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In response to the missing discrete variables in current wireless network topology optimization, an improved particle swarm optimization algorithm based on fusion of discrete variables is proposed to obtain network discrete variables. A wireless network topology optimization model is constructed. The research results indicate that it has better anti-interference performance in complex situations, which contributes to improving network load balancing. The topology obtained by this method has independence and predictability. When optimizing network topology, it has high network node coverage. When the network nodes are 50, 100, 150, and 200, the connectivity is 99.85 %, 93.64 %, 91.25 %, and 90.18 %, respectively. The testing time is 19s, 34s, 54s, and 64s respectively, which has the best optimization performance. The method can effectively improve the missing discrete variables in wireless network topology optimization, which has good performance.</p></div>\",\"PeriodicalId\":101205,\"journal\":{\"name\":\"Systems and Soft Computing\",\"volume\":\"6 \",\"pages\":\"Article 200142\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772941924000711/pdfft?md5=698719ce0fc9dccbde4a75805f80ca82&pid=1-s2.0-S2772941924000711-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772941924000711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772941924000711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对目前无线网络拓扑优化中离散变量缺失的问题,提出了一种基于离散变量融合的改进粒子群优化算法,以获得网络离散变量。构建了无线网络拓扑优化模型。研究结果表明,它在复杂情况下具有更好的抗干扰性能,有助于改善网络负载平衡。该方法得到的拓扑结构具有独立性和可预测性。优化网络拓扑时,网络节点覆盖率高。当网络节点数为 50、100、150 和 200 时,连通性分别为 99.85 %、93.64 %、91.25 % 和 90.18 %。测试时间分别为 19s、34s、54s 和 64s,优化效果最佳。该方法能有效改善无线网络拓扑优化中的离散变量缺失问题,性能良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wireless network topology optimization algorithm based on discrete variables

In response to the missing discrete variables in current wireless network topology optimization, an improved particle swarm optimization algorithm based on fusion of discrete variables is proposed to obtain network discrete variables. A wireless network topology optimization model is constructed. The research results indicate that it has better anti-interference performance in complex situations, which contributes to improving network load balancing. The topology obtained by this method has independence and predictability. When optimizing network topology, it has high network node coverage. When the network nodes are 50, 100, 150, and 200, the connectivity is 99.85 %, 93.64 %, 91.25 %, and 90.18 %, respectively. The testing time is 19s, 34s, 54s, and 64s respectively, which has the best optimization performance. The method can effectively improve the missing discrete variables in wireless network topology optimization, which has good performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
Application of an intelligent English text classification model with improved KNN algorithm in the context of big data in libraries Analyzing the quality evaluation of college English teaching based on probabilistic linguistic multiple-attribute group decision-making Interior design assistant algorithm based on indoor scene analysis Research and application of visual synchronous positioning and mapping technology assisted by ultra wideband positioning technology Sentiment analysis of movie reviews: A flask application using CNN with RoBERTa embeddings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1