{"title":"抽取地下水对潮汐控制的无约束沿海含水层孔隙水流和盐分迁移的影响","authors":"Qian Chen, Lei Zhang, Chengji Shen, Chunhui Lu","doi":"10.1002/hyp.15261","DOIUrl":null,"url":null,"abstract":"<p>Unconfined coastal aquifers are a main pathway for land-sourced solutes to enter the oceans. The migration of these solutes in aquifers is highly affected by the groundwater flow and salt transport processes, which are, to a great extent, controlled by tides. While many studies have examined how tidal oscillations would influence the subsurface hydrodynamics in coastal aquifers, most of them ignored the potential impact of groundwater pumping, a common practice in coastal areas to satisfy the demand for freshwater. This study, by means of laboratory experiments and numerical simulations, explored the combined effects of tides and groundwater pumping on the pore water flow and salinity distributions in an unconfined coastal aquifer. The results show that, in a tide-controlled aquifer, the addition of groundwater pumping would exacerbate the degree of seawater intrusion and lead to wider spreading and deeper penetration of the upper saline plume. Moreover, groundwater pumping would enhance the tide-driven circulation in the upper saline plume and weaken the density-driven circulation in the saltwater wedge, ultimately leading to the reduction in total submarine groundwater discharge. These findings may promote a deep insight into the complex coastal groundwater systems experiencing human activities, and provide guidance for better evaluating the environmental impact of groundwater pumping.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 8","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of groundwater pumping on pore water flow and salt transport in tide-controlled unconfined coastal aquifers\",\"authors\":\"Qian Chen, Lei Zhang, Chengji Shen, Chunhui Lu\",\"doi\":\"10.1002/hyp.15261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Unconfined coastal aquifers are a main pathway for land-sourced solutes to enter the oceans. The migration of these solutes in aquifers is highly affected by the groundwater flow and salt transport processes, which are, to a great extent, controlled by tides. While many studies have examined how tidal oscillations would influence the subsurface hydrodynamics in coastal aquifers, most of them ignored the potential impact of groundwater pumping, a common practice in coastal areas to satisfy the demand for freshwater. This study, by means of laboratory experiments and numerical simulations, explored the combined effects of tides and groundwater pumping on the pore water flow and salinity distributions in an unconfined coastal aquifer. The results show that, in a tide-controlled aquifer, the addition of groundwater pumping would exacerbate the degree of seawater intrusion and lead to wider spreading and deeper penetration of the upper saline plume. Moreover, groundwater pumping would enhance the tide-driven circulation in the upper saline plume and weaken the density-driven circulation in the saltwater wedge, ultimately leading to the reduction in total submarine groundwater discharge. These findings may promote a deep insight into the complex coastal groundwater systems experiencing human activities, and provide guidance for better evaluating the environmental impact of groundwater pumping.</p>\",\"PeriodicalId\":13189,\"journal\":{\"name\":\"Hydrological Processes\",\"volume\":\"38 8\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Processes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hyp.15261\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.15261","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Effects of groundwater pumping on pore water flow and salt transport in tide-controlled unconfined coastal aquifers
Unconfined coastal aquifers are a main pathway for land-sourced solutes to enter the oceans. The migration of these solutes in aquifers is highly affected by the groundwater flow and salt transport processes, which are, to a great extent, controlled by tides. While many studies have examined how tidal oscillations would influence the subsurface hydrodynamics in coastal aquifers, most of them ignored the potential impact of groundwater pumping, a common practice in coastal areas to satisfy the demand for freshwater. This study, by means of laboratory experiments and numerical simulations, explored the combined effects of tides and groundwater pumping on the pore water flow and salinity distributions in an unconfined coastal aquifer. The results show that, in a tide-controlled aquifer, the addition of groundwater pumping would exacerbate the degree of seawater intrusion and lead to wider spreading and deeper penetration of the upper saline plume. Moreover, groundwater pumping would enhance the tide-driven circulation in the upper saline plume and weaken the density-driven circulation in the saltwater wedge, ultimately leading to the reduction in total submarine groundwater discharge. These findings may promote a deep insight into the complex coastal groundwater systems experiencing human activities, and provide guidance for better evaluating the environmental impact of groundwater pumping.
期刊介绍:
Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.