通过添加剂辅助逐层制造具有块状 pi-n 结构和改进光学管理的 20.8% 有机太阳能电池

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2024-08-29 DOI:10.1016/j.joule.2024.08.001
Lei Zhu, Ming Zhang, Guanqing Zhou, Zaiyu Wang, Wenkai Zhong, Jiaxin Zhuang, Zichun Zhou, Xingyu Gao, Lixuan Kan, Bonan Hao, Fei Han, Rui Zeng, Xiaonan Xue, Shengjie Xu, Hao Jing, Biao Xiao, Haiming Zhu, Yongming Zhang, Feng Liu
{"title":"通过添加剂辅助逐层制造具有块状 pi-n 结构和改进光学管理的 20.8% 有机太阳能电池","authors":"Lei Zhu, Ming Zhang, Guanqing Zhou, Zaiyu Wang, Wenkai Zhong, Jiaxin Zhuang, Zichun Zhou, Xingyu Gao, Lixuan Kan, Bonan Hao, Fei Han, Rui Zeng, Xiaonan Xue, Shengjie Xu, Hao Jing, Biao Xiao, Haiming Zhu, Yongming Zhang, Feng Liu","doi":"10.1016/j.joule.2024.08.001","DOIUrl":null,"url":null,"abstract":"<p>Additive-assisted layer-by-layer (LBL) deposition affords interpenetrating fibril network active layer morphology with a bulk <em>p-i-n</em> feature and proper vertical segregation in organic solar cells (OSCs). This approach captures the balance between material interaction and crystallization that locks the characteristic length scales at tens of nanometers to suit exciton and carrier diffusion, thereby reducing recombination losses. On the other hand, the wrinkle-pattern morphology generated due to Marangoni-Bénard instability and radial flow during spin-coating couples with the reflective back electrode, inducing diffuse reflection and thus enhancing light capture capability. The nano-to-micron hierarchical morphology in proper vertical segregation achieves a record-breaking power conversion efficiency (PCE) of 20.8% for small-area devices and 17.0% for mini-module devices. The new processing and the resulted 3D morphology better suit photon and carrier dynamics in operation, such that a notable improvement in device operational stability is recorded, which offers a plausible strategy toward practical organic photovoltaic technology.</p>","PeriodicalId":343,"journal":{"name":"Joule","volume":null,"pages":null},"PeriodicalIF":38.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving 20.8% organic solar cells via additive-assisted layer-by-layer fabrication with bulk p-i-n structure and improved optical management\",\"authors\":\"Lei Zhu, Ming Zhang, Guanqing Zhou, Zaiyu Wang, Wenkai Zhong, Jiaxin Zhuang, Zichun Zhou, Xingyu Gao, Lixuan Kan, Bonan Hao, Fei Han, Rui Zeng, Xiaonan Xue, Shengjie Xu, Hao Jing, Biao Xiao, Haiming Zhu, Yongming Zhang, Feng Liu\",\"doi\":\"10.1016/j.joule.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Additive-assisted layer-by-layer (LBL) deposition affords interpenetrating fibril network active layer morphology with a bulk <em>p-i-n</em> feature and proper vertical segregation in organic solar cells (OSCs). This approach captures the balance between material interaction and crystallization that locks the characteristic length scales at tens of nanometers to suit exciton and carrier diffusion, thereby reducing recombination losses. On the other hand, the wrinkle-pattern morphology generated due to Marangoni-Bénard instability and radial flow during spin-coating couples with the reflective back electrode, inducing diffuse reflection and thus enhancing light capture capability. The nano-to-micron hierarchical morphology in proper vertical segregation achieves a record-breaking power conversion efficiency (PCE) of 20.8% for small-area devices and 17.0% for mini-module devices. The new processing and the resulted 3D morphology better suit photon and carrier dynamics in operation, such that a notable improvement in device operational stability is recorded, which offers a plausible strategy toward practical organic photovoltaic technology.</p>\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.joule.2024.08.001\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2024.08.001","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

添加剂辅助逐层沉积(LBL)技术使有机太阳能电池(OSC)中的穿插纤维网络活性层形态具有大块 pi-n 特征和适当的垂直隔离。这种方法能在材料相互作用和结晶之间取得平衡,将特征长度尺度锁定在几十纳米,以适应激子和载流子扩散,从而减少重组损耗。另一方面,在旋涂过程中,由于马兰戈尼-贝纳德不稳定性和径向流动而产生的皱纹图案形态与反射背电极耦合,引起漫反射,从而增强了光捕获能力。纳米到微米的分层形态在适当的垂直偏析中实现了破纪录的功率转换效率(PCE),小面积器件达到 20.8%,微型模块器件达到 17.0%。新的加工工艺和由此产生的三维形态更适合运行中的光子和载流子动力学,因此显著提高了器件的运行稳定性,为实现实用有机光伏技术提供了可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Achieving 20.8% organic solar cells via additive-assisted layer-by-layer fabrication with bulk p-i-n structure and improved optical management

Additive-assisted layer-by-layer (LBL) deposition affords interpenetrating fibril network active layer morphology with a bulk p-i-n feature and proper vertical segregation in organic solar cells (OSCs). This approach captures the balance between material interaction and crystallization that locks the characteristic length scales at tens of nanometers to suit exciton and carrier diffusion, thereby reducing recombination losses. On the other hand, the wrinkle-pattern morphology generated due to Marangoni-Bénard instability and radial flow during spin-coating couples with the reflective back electrode, inducing diffuse reflection and thus enhancing light capture capability. The nano-to-micron hierarchical morphology in proper vertical segregation achieves a record-breaking power conversion efficiency (PCE) of 20.8% for small-area devices and 17.0% for mini-module devices. The new processing and the resulted 3D morphology better suit photon and carrier dynamics in operation, such that a notable improvement in device operational stability is recorded, which offers a plausible strategy toward practical organic photovoltaic technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
A reversible four-electron Sn metal aqueous battery Single-source pulsed laser-deposited perovskite solar cells with enhanced performance via bulk and 2D passivation Shareholder, regulatory, and social influence on firm behavior and energy market outcomes Cost-efficient recycling of organic photovoltaic devices Meniscus-modulated blade coating enables high-quality α-phase formamidinium lead triiodide crystals and efficient perovskite minimodules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1