缺失连接体缺陷功能化金属有机框架加速锌离子传导,实现超稳定全固态锌金属电池

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-08-29 DOI:10.1021/acsnano.4c07907
Xiaobin Hui, Zhen Zhan, Zeyu Zhang, Jingya Yu, Pengyan Jiang, Zhengzheng Dang, Jian Wang, Songhua Cai, Yanming Wang, Zheng-Long Xu
{"title":"缺失连接体缺陷功能化金属有机框架加速锌离子传导,实现超稳定全固态锌金属电池","authors":"Xiaobin Hui, Zhen Zhan, Zeyu Zhang, Jingya Yu, Pengyan Jiang, Zhengzheng Dang, Jian Wang, Songhua Cai, Yanming Wang, Zheng-Long Xu","doi":"10.1021/acsnano.4c07907","DOIUrl":null,"url":null,"abstract":"Solid-state polymer electrolytes (SPEs) are promising for high-performance zinc metal batteries (ZMBs), but they encounter critical challenges of low ionic conductivity, limited Zn<sup>2+</sup> transference number (<i>t</i><sub>Zn2+</sub>), and an unstable electrolyte-electrode interface. Here, we present an effective approach involving a missing-linker metallic organic framework (MOF)-catalyzed poly(ethylene glycol) diacrylate (PEGDA)/polyacrylamide (PAM) copolymer SPE for single Zn<sup>2+</sup> conduction and seamless electrolyte-electrode contact. The single-Zn<sup>2+</sup> conduction is facilitated by the anchoring of the OTF<sup>–</sup> anions onto the unsaturated metal sites of missing-linker MOF, while the PEGDA and PAM chains in competitive coordination with Zn<sup>2+</sup> ions promote rapid Zn ion transport. Our all-solid-state electrolyte simultaneously achieves a superior ionic conductivity of 1.52 mS cm<sup>–1</sup> and a high <i>t</i><sub>Zn2+</sub> of 0.83 at room temperature, alongside uniform Zn metal deposition (1000 cycles in symmetric cells) and high Zn plating/striping efficiencies (&gt;99% after 600 cycles in asymmetric cells). Applications of our SPE in Zn//VO<sub>2</sub> full cells are further demonstrated with a long lifespan of 2000 cycles and an extremely low-capacity degradation rate of 0.012% per cycle. This work provides an effective strategy for using a missing-linker MOF to catalyze competitively coordinating copolymers for accelerating Zn<sup>2+</sup> ion conduction, assisting the future design of all-solid-state ZMBs.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Missing-Linker Defect Functionalized Metal–Organic Frameworks Accelerating Zinc Ion Conduction for Ultrastable All-Solid-State Zinc Metal Batteries\",\"authors\":\"Xiaobin Hui, Zhen Zhan, Zeyu Zhang, Jingya Yu, Pengyan Jiang, Zhengzheng Dang, Jian Wang, Songhua Cai, Yanming Wang, Zheng-Long Xu\",\"doi\":\"10.1021/acsnano.4c07907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid-state polymer electrolytes (SPEs) are promising for high-performance zinc metal batteries (ZMBs), but they encounter critical challenges of low ionic conductivity, limited Zn<sup>2+</sup> transference number (<i>t</i><sub>Zn2+</sub>), and an unstable electrolyte-electrode interface. Here, we present an effective approach involving a missing-linker metallic organic framework (MOF)-catalyzed poly(ethylene glycol) diacrylate (PEGDA)/polyacrylamide (PAM) copolymer SPE for single Zn<sup>2+</sup> conduction and seamless electrolyte-electrode contact. The single-Zn<sup>2+</sup> conduction is facilitated by the anchoring of the OTF<sup>–</sup> anions onto the unsaturated metal sites of missing-linker MOF, while the PEGDA and PAM chains in competitive coordination with Zn<sup>2+</sup> ions promote rapid Zn ion transport. Our all-solid-state electrolyte simultaneously achieves a superior ionic conductivity of 1.52 mS cm<sup>–1</sup> and a high <i>t</i><sub>Zn2+</sub> of 0.83 at room temperature, alongside uniform Zn metal deposition (1000 cycles in symmetric cells) and high Zn plating/striping efficiencies (&gt;99% after 600 cycles in asymmetric cells). Applications of our SPE in Zn//VO<sub>2</sub> full cells are further demonstrated with a long lifespan of 2000 cycles and an extremely low-capacity degradation rate of 0.012% per cycle. This work provides an effective strategy for using a missing-linker MOF to catalyze competitively coordinating copolymers for accelerating Zn<sup>2+</sup> ion conduction, assisting the future design of all-solid-state ZMBs.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c07907\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c07907","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

固态聚合物电解质(SPEs)在高性能锌金属电池(ZMBs)中大有可为,但却面临着离子电导率低、Zn2+转移数(tZn2+)有限以及电解质-电极界面不稳定等严峻挑战。在这里,我们提出了一种有效的方法,即采用缺失连接剂金属有机框架(MOF)催化聚(乙二醇)二丙烯酸酯(PEGDA)/聚丙烯酰胺(PAM)共聚物 SPE,实现单 Zn2+ 传导和电解质-电极无缝接触。OTF- 阴离子锚定在缺失连接剂 MOF 的不饱和金属位点上,促进了单 Zn2+ 传导,而与 Zn2+ 离子竞争配位的 PEGDA 和 PAM 链则促进了 Zn 离子的快速传输。我们的全固态电解质在室温下同时实现了 1.52 mS cm-1 的卓越离子电导率和 0.83 的高 tZn2+,以及均匀的锌金属沉积(在对称电池中循环 1000 次)和高锌电镀/剥离效率(在不对称电池中循环 600 次后达到 99%)。我们的固相萃取技术在 Zn/VO2 全电池中的应用得到了进一步证实,其使用寿命长达 2000 个循环,且容量衰减率极低,每个循环仅为 0.012%。这项研究为使用缺失连接剂 MOF 催化竞争性配位共聚物加速 Zn2+ 离子传导提供了一种有效的策略,有助于未来全固态 ZMB 的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Missing-Linker Defect Functionalized Metal–Organic Frameworks Accelerating Zinc Ion Conduction for Ultrastable All-Solid-State Zinc Metal Batteries
Solid-state polymer electrolytes (SPEs) are promising for high-performance zinc metal batteries (ZMBs), but they encounter critical challenges of low ionic conductivity, limited Zn2+ transference number (tZn2+), and an unstable electrolyte-electrode interface. Here, we present an effective approach involving a missing-linker metallic organic framework (MOF)-catalyzed poly(ethylene glycol) diacrylate (PEGDA)/polyacrylamide (PAM) copolymer SPE for single Zn2+ conduction and seamless electrolyte-electrode contact. The single-Zn2+ conduction is facilitated by the anchoring of the OTF anions onto the unsaturated metal sites of missing-linker MOF, while the PEGDA and PAM chains in competitive coordination with Zn2+ ions promote rapid Zn ion transport. Our all-solid-state electrolyte simultaneously achieves a superior ionic conductivity of 1.52 mS cm–1 and a high tZn2+ of 0.83 at room temperature, alongside uniform Zn metal deposition (1000 cycles in symmetric cells) and high Zn plating/striping efficiencies (>99% after 600 cycles in asymmetric cells). Applications of our SPE in Zn//VO2 full cells are further demonstrated with a long lifespan of 2000 cycles and an extremely low-capacity degradation rate of 0.012% per cycle. This work provides an effective strategy for using a missing-linker MOF to catalyze competitively coordinating copolymers for accelerating Zn2+ ion conduction, assisting the future design of all-solid-state ZMBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
A Mucous Permeable Local Delivery Strategy Based on Manganese-Enhanced Bacterial Cuproptosis-like Death for Bacterial Pneumonia Treatment. Surface-Reconstructed CdNNi3 Antiperovskite Electrocatalyst: Unlocking Ampere-Level Current Density for Hydrogen Evolution. Coherent Acoustic Phonons in Plasmonic Nanoparticles: Elastic Properties and Dissipation at Low Temperatures Dual-Steric Hindrance Modulation of Interface Electrochemistry for Potassium-Ion Batteries Direct Three-Dimensional Observation of the Plasmonic Near-Fields of a Nanoparticle with Circular Dichroism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1