基于 ML 的木马分类:有毒边界网的影响

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Embedded Systems Letters Pub Date : 2023-12-04 DOI:10.1109/LES.2023.3338543
Saleh Mulhem;Felix Muuss;Christian Ewert;Rainer Buchty;Mladen Berekovic
{"title":"基于 ML 的木马分类:有毒边界网的影响","authors":"Saleh Mulhem;Felix Muuss;Christian Ewert;Rainer Buchty;Mladen Berekovic","doi":"10.1109/LES.2023.3338543","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) algorithms were recently adapted for testing integrated circuits and detecting potential design backdoors. Such testing mechanisms mainly rely on the available training dataset and the extracted features of the Trojan circuit. In this letter, we demonstrate that this method is attackable by exploiting a structural problem of classifiers for hardware Trojan (HT) detection in gate-level netlists, called the boundary net (BN) problem. There, an adversary modifies the labels of those BNs, connecting the original logic to the Trojan circuit. We show that the proposed adversarial label-flipping attacks (ALFAs) are potentially highly toxic to the accuracy of supervised ML-based Trojan detection approaches. The experimental results indicate that an adversary needs to flip only 0.09% of all labels to achieve an accuracy drop of over 9%, demonstrating one of the most efficient ALFAs in the HT detection research domain.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 3","pages":"251-254"},"PeriodicalIF":1.7000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10341539","citationCount":"0","resultStr":"{\"title\":\"ML-Based Trojan Classification: Repercussions of Toxic Boundary Nets\",\"authors\":\"Saleh Mulhem;Felix Muuss;Christian Ewert;Rainer Buchty;Mladen Berekovic\",\"doi\":\"10.1109/LES.2023.3338543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning (ML) algorithms were recently adapted for testing integrated circuits and detecting potential design backdoors. Such testing mechanisms mainly rely on the available training dataset and the extracted features of the Trojan circuit. In this letter, we demonstrate that this method is attackable by exploiting a structural problem of classifiers for hardware Trojan (HT) detection in gate-level netlists, called the boundary net (BN) problem. There, an adversary modifies the labels of those BNs, connecting the original logic to the Trojan circuit. We show that the proposed adversarial label-flipping attacks (ALFAs) are potentially highly toxic to the accuracy of supervised ML-based Trojan detection approaches. The experimental results indicate that an adversary needs to flip only 0.09% of all labels to achieve an accuracy drop of over 9%, demonstrating one of the most efficient ALFAs in the HT detection research domain.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"16 3\",\"pages\":\"251-254\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10341539\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10341539/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10341539/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)算法最近被用于测试集成电路和检测潜在的设计后门。这种测试机制主要依赖于可用的训练数据集和提取的木马电路特征。在这封信中,我们利用门级网表中硬件木马(HT)检测分类器的一个结构性问题,即边界网(BN)问题,证明这种方法是可以攻击的。在这种情况下,对手会修改这些 BN 的标签,将原始逻辑与木马电路连接起来。我们的研究表明,所提出的对抗性标签翻转攻击(ALFAs)可能会对基于监督式 ML 的木马检测方法的准确性造成严重影响。实验结果表明,对抗者只需翻转所有标签的 0.09%,就能使准确率下降 9% 以上,是 HT 检测研究领域最有效的 ALFA 之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ML-Based Trojan Classification: Repercussions of Toxic Boundary Nets
Machine learning (ML) algorithms were recently adapted for testing integrated circuits and detecting potential design backdoors. Such testing mechanisms mainly rely on the available training dataset and the extracted features of the Trojan circuit. In this letter, we demonstrate that this method is attackable by exploiting a structural problem of classifiers for hardware Trojan (HT) detection in gate-level netlists, called the boundary net (BN) problem. There, an adversary modifies the labels of those BNs, connecting the original logic to the Trojan circuit. We show that the proposed adversarial label-flipping attacks (ALFAs) are potentially highly toxic to the accuracy of supervised ML-based Trojan detection approaches. The experimental results indicate that an adversary needs to flip only 0.09% of all labels to achieve an accuracy drop of over 9%, demonstrating one of the most efficient ALFAs in the HT detection research domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
期刊最新文献
Time-Sensitive Networking in Low Latency Cyber-Physical Systems FedTinyWolf -A Memory Efficient Federated Embedded Learning Mechanism SCALLER: Standard Cell Assembled and Local Layout Effect-Based Ring Oscillators Table of Contents IEEE Embedded Systems Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1