{"title":"为种植香蕉而砍伐山地常绿林,使土壤有机碳和总氮储存量下降到令人担忧的水平","authors":"Tarquinio Mateus Magalhães, Edna Rita Bernardo Cossa, Hunilcia Esperança Nhanombe, Amélia David Muchanga Mugabe","doi":"10.1186/s13021-024-00278-w","DOIUrl":null,"url":null,"abstract":"<div><p>Forest conversion to agricultural land has been shown to deplete soil organic carbon (SOC) and soil total nitrogen (STN) stocks. However, research on how soil properties respond to forest conversion to shifting cultivation has produced conflicting results. The conflicting findings suggest that the agricultural system may influence the response of SOC and STN to forest conversion to agriculture, depending on the presence of vegetative cover throughout the year. Due to the unique characteristics of montane evergreen forests (MEF) and banana plantations (BP), SOC and STN response to MEF conversion to BP may differ from existing models. Nevertheless, research on how soil properties are affected by MEF conversion to BP is scarce globally. In order to fill this research gap, the goal of this study was to evaluate how much deforestation for BP affects SOC, STN, and soil quality by analysing these soil parameters in MEF and BP fields down to 1-m depth, using standard profile-based procedures. Contrary to the specified hypothesis that SOC and STN losses would be restricted to the upper 20-cm soil layer, SOC losses were extended to the 40-cm depth layer and STN losses to the 60-cm depth layer. The soils lost 18.56 Mg ha <sup>– 1</sup> (37%) of SOC from the upper 20 cm and 33.15 Mg ha <sup>– 1</sup> (37%) from the upper 40 cm, following MEF conversion to BP. In terms of STN, the upper 20, 40, and 60 cm lost 2.98 (43%), 6.62 (47%), and 8.30 Mg ha <sup>– 1</sup> (44%), respectively. Following MEF conversion to BP, the SOC stratification ratio decreased by 49%, implying a decline in soil quality. Massive exportation of nutrients, reduced C inputs due to complete removal of the arboreal component and crop residues, the erodibility of the soils on the study area’s steep hillslopes, and the potential for banana plantations to increase throughfall kinetic energy, and splash erosion through canopy dripping are thought to be the leading causes of SOC and STN losses. More research is needed to identify the extent to which each cause influences SOC and STN losses.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00278-w","citationCount":"0","resultStr":"{\"title\":\"Montane evergreen forest deforestation for banana plantations decreased soil organic carbon and total nitrogen stores to alarming levels\",\"authors\":\"Tarquinio Mateus Magalhães, Edna Rita Bernardo Cossa, Hunilcia Esperança Nhanombe, Amélia David Muchanga Mugabe\",\"doi\":\"10.1186/s13021-024-00278-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Forest conversion to agricultural land has been shown to deplete soil organic carbon (SOC) and soil total nitrogen (STN) stocks. However, research on how soil properties respond to forest conversion to shifting cultivation has produced conflicting results. The conflicting findings suggest that the agricultural system may influence the response of SOC and STN to forest conversion to agriculture, depending on the presence of vegetative cover throughout the year. Due to the unique characteristics of montane evergreen forests (MEF) and banana plantations (BP), SOC and STN response to MEF conversion to BP may differ from existing models. Nevertheless, research on how soil properties are affected by MEF conversion to BP is scarce globally. In order to fill this research gap, the goal of this study was to evaluate how much deforestation for BP affects SOC, STN, and soil quality by analysing these soil parameters in MEF and BP fields down to 1-m depth, using standard profile-based procedures. Contrary to the specified hypothesis that SOC and STN losses would be restricted to the upper 20-cm soil layer, SOC losses were extended to the 40-cm depth layer and STN losses to the 60-cm depth layer. The soils lost 18.56 Mg ha <sup>– 1</sup> (37%) of SOC from the upper 20 cm and 33.15 Mg ha <sup>– 1</sup> (37%) from the upper 40 cm, following MEF conversion to BP. In terms of STN, the upper 20, 40, and 60 cm lost 2.98 (43%), 6.62 (47%), and 8.30 Mg ha <sup>– 1</sup> (44%), respectively. Following MEF conversion to BP, the SOC stratification ratio decreased by 49%, implying a decline in soil quality. Massive exportation of nutrients, reduced C inputs due to complete removal of the arboreal component and crop residues, the erodibility of the soils on the study area’s steep hillslopes, and the potential for banana plantations to increase throughfall kinetic energy, and splash erosion through canopy dripping are thought to be the leading causes of SOC and STN losses. More research is needed to identify the extent to which each cause influences SOC and STN losses.</p></div>\",\"PeriodicalId\":505,\"journal\":{\"name\":\"Carbon Balance and Management\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00278-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Balance and Management\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13021-024-00278-w\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-024-00278-w","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Montane evergreen forest deforestation for banana plantations decreased soil organic carbon and total nitrogen stores to alarming levels
Forest conversion to agricultural land has been shown to deplete soil organic carbon (SOC) and soil total nitrogen (STN) stocks. However, research on how soil properties respond to forest conversion to shifting cultivation has produced conflicting results. The conflicting findings suggest that the agricultural system may influence the response of SOC and STN to forest conversion to agriculture, depending on the presence of vegetative cover throughout the year. Due to the unique characteristics of montane evergreen forests (MEF) and banana plantations (BP), SOC and STN response to MEF conversion to BP may differ from existing models. Nevertheless, research on how soil properties are affected by MEF conversion to BP is scarce globally. In order to fill this research gap, the goal of this study was to evaluate how much deforestation for BP affects SOC, STN, and soil quality by analysing these soil parameters in MEF and BP fields down to 1-m depth, using standard profile-based procedures. Contrary to the specified hypothesis that SOC and STN losses would be restricted to the upper 20-cm soil layer, SOC losses were extended to the 40-cm depth layer and STN losses to the 60-cm depth layer. The soils lost 18.56 Mg ha – 1 (37%) of SOC from the upper 20 cm and 33.15 Mg ha – 1 (37%) from the upper 40 cm, following MEF conversion to BP. In terms of STN, the upper 20, 40, and 60 cm lost 2.98 (43%), 6.62 (47%), and 8.30 Mg ha – 1 (44%), respectively. Following MEF conversion to BP, the SOC stratification ratio decreased by 49%, implying a decline in soil quality. Massive exportation of nutrients, reduced C inputs due to complete removal of the arboreal component and crop residues, the erodibility of the soils on the study area’s steep hillslopes, and the potential for banana plantations to increase throughfall kinetic energy, and splash erosion through canopy dripping are thought to be the leading causes of SOC and STN losses. More research is needed to identify the extent to which each cause influences SOC and STN losses.
期刊介绍:
Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle.
The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community.
This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system.
Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.