Mark T. Richardson, Brian H. Kahn, Peter M. Kalmus
{"title":"中尺度空气运动和热力学预测美国每小时强降水","authors":"Mark T. Richardson, Brian H. Kahn, Peter M. Kalmus","doi":"10.1038/s43247-024-01614-1","DOIUrl":null,"url":null,"abstract":"Predicting heavy precipitation remains scientifically challenging. Here we combine Atmospheric Infrared Sounder (AIRS) temperature and moisture soundings and weather forecast winds to predict the formation of thermodynamic conditions favourable for convection in the hours following satellite overpasses. Here we treat AIRS retrievals as air parcels that are moved adiabatically to generate time-varying fields. Over much of the Central-Eastern Continental U.S. during the non-winter months of 2019–2020, our derived convective available potential energy alone predicts intense precipitation. For hourly precipitation above the all-hours 99.9th percentile, performance is marginally lower than forecasts from a convection permitting model, but similar to the ERA5 reanalysis and substantially better than using the original AIRS soundings. Our results illustrate how mesoscale advection is a major contributor to developing heavy precipitation in the region. Enhancing the full AIRS record as described here would provide an alternative approach to quantify multi-decade trends in heavy precipitation risk. Integrating weather-forecast wind data with satellite-based temperature and moisture soundings leads to better predictions of heavy hourly precipitation over the central and eastern continental United States, according to an analysis of Atmospheric Infrared Sounder (AIRS) data.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01614-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Mesoscale air motion and thermodynamics predict heavy hourly U.S. precipitation\",\"authors\":\"Mark T. Richardson, Brian H. Kahn, Peter M. Kalmus\",\"doi\":\"10.1038/s43247-024-01614-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting heavy precipitation remains scientifically challenging. Here we combine Atmospheric Infrared Sounder (AIRS) temperature and moisture soundings and weather forecast winds to predict the formation of thermodynamic conditions favourable for convection in the hours following satellite overpasses. Here we treat AIRS retrievals as air parcels that are moved adiabatically to generate time-varying fields. Over much of the Central-Eastern Continental U.S. during the non-winter months of 2019–2020, our derived convective available potential energy alone predicts intense precipitation. For hourly precipitation above the all-hours 99.9th percentile, performance is marginally lower than forecasts from a convection permitting model, but similar to the ERA5 reanalysis and substantially better than using the original AIRS soundings. Our results illustrate how mesoscale advection is a major contributor to developing heavy precipitation in the region. Enhancing the full AIRS record as described here would provide an alternative approach to quantify multi-decade trends in heavy precipitation risk. Integrating weather-forecast wind data with satellite-based temperature and moisture soundings leads to better predictions of heavy hourly precipitation over the central and eastern continental United States, according to an analysis of Atmospheric Infrared Sounder (AIRS) data.\",\"PeriodicalId\":10530,\"journal\":{\"name\":\"Communications Earth & Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43247-024-01614-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Earth & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s43247-024-01614-1\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01614-1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Mesoscale air motion and thermodynamics predict heavy hourly U.S. precipitation
Predicting heavy precipitation remains scientifically challenging. Here we combine Atmospheric Infrared Sounder (AIRS) temperature and moisture soundings and weather forecast winds to predict the formation of thermodynamic conditions favourable for convection in the hours following satellite overpasses. Here we treat AIRS retrievals as air parcels that are moved adiabatically to generate time-varying fields. Over much of the Central-Eastern Continental U.S. during the non-winter months of 2019–2020, our derived convective available potential energy alone predicts intense precipitation. For hourly precipitation above the all-hours 99.9th percentile, performance is marginally lower than forecasts from a convection permitting model, but similar to the ERA5 reanalysis and substantially better than using the original AIRS soundings. Our results illustrate how mesoscale advection is a major contributor to developing heavy precipitation in the region. Enhancing the full AIRS record as described here would provide an alternative approach to quantify multi-decade trends in heavy precipitation risk. Integrating weather-forecast wind data with satellite-based temperature and moisture soundings leads to better predictions of heavy hourly precipitation over the central and eastern continental United States, according to an analysis of Atmospheric Infrared Sounder (AIRS) data.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.