在追踪和记录数据集出处方面向前迈进了一步

IF 18.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Nature Machine Intelligence Pub Date : 2024-08-30 DOI:10.1038/s42256-024-00884-w
Nicholas Vincent
{"title":"在追踪和记录数据集出处方面向前迈进了一步","authors":"Nicholas Vincent","doi":"10.1038/s42256-024-00884-w","DOIUrl":null,"url":null,"abstract":"Training data are crucial for advancements in artificial intelligence, but many questions remain regarding the provenance of training datasets, license enforcement and creator consent. Mahari et al. provide a set of tools for tracing, documenting and sharing AI training data and highlight the importance for developers to engage with metadata of datasets.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 8","pages":"848-849"},"PeriodicalIF":18.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A step forward in tracing and documenting dataset provenance\",\"authors\":\"Nicholas Vincent\",\"doi\":\"10.1038/s42256-024-00884-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Training data are crucial for advancements in artificial intelligence, but many questions remain regarding the provenance of training datasets, license enforcement and creator consent. Mahari et al. provide a set of tools for tracing, documenting and sharing AI training data and highlight the importance for developers to engage with metadata of datasets.\",\"PeriodicalId\":48533,\"journal\":{\"name\":\"Nature Machine Intelligence\",\"volume\":\"6 8\",\"pages\":\"848-849\"},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.nature.com/articles/s42256-024-00884-w\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00884-w","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

训练数据对人工智能的进步至关重要,但在训练数据集的来源、许可证的执行和创建者的同意方面仍存在许多问题。Mahari 等人提供了一套用于追踪、记录和共享人工智能训练数据的工具,并强调了开发人员参与数据集元数据的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A step forward in tracing and documenting dataset provenance
Training data are crucial for advancements in artificial intelligence, but many questions remain regarding the provenance of training datasets, license enforcement and creator consent. Mahari et al. provide a set of tools for tracing, documenting and sharing AI training data and highlight the importance for developers to engage with metadata of datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
36.90
自引率
2.10%
发文量
127
期刊介绍: Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements. To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects. Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.
期刊最新文献
Multimodal language and graph learning of adsorption configuration in catalysis Self-decoupling three-axis forces in a simple sensor Toward a framework for risk mitigation of potential misuse of artificial intelligence in biomedical research Contextual feature extraction hierarchies converge in large language models and the brain Machine learning for practical quantum error mitigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1